Chainflex Couplings

R BNOTH

Strength through Service

Renold Gears has been manufacturing high quality, high specification gear units for over 100 years and has always been at the leading edge of gear technology with innovative products and power transmission solutions.

Interchangeability

Many of the products from Renold Gears are dimensionally interchangeable with other manufacturers gear units, allowing a trouble free replacement of gearboxes, in most cases upgrading the capacity through state of the art technology and materials.

Custom Made

Renold Gears is unique in it's ability to offer custom made products designed to meet customers exacting requirements without compromise on availability and cost. From complete package solutions to individual precision replacement gears, all can be tailor made to meet specific applicational requirements.

Available

The most popular ranges of gearboxes are available from local distribution stock, backed up by extensive stocks from our manufacturing plant in the UK.

Contents

Page No
Renold Gears inside front cover
Coupling Selection Guide 02
Load Classification by Application 03
Service Factors and Selection 04
Key and Keyway Dimensions 05
Crownpin 06
Renold Chain inside back cover

Coupling Selection Guide

Flexible Couplings should be used to accommodate any combination of misalignment conditions described below.

At installation all couplings should be aligned as near to perfect as possible.

1. Angular

Angular misalignment is present when the shaft axes are inclined one to the other. Its magnitude can be measured at the coupling faces.

2. Parallel Offset

Axial misalignment is present when the axes of the driving and driven shafts are parallel but laterally displaced.

3. End float (axial)

End float is the ability to accommodate a relative axial displacement of the connected shafts; achieved by sliding members or flexing of resilient components.

4. Torsional flexibility

Torsional flexibility is a design feature necessary to permit shock and impulsive loadings to be suitably dampened. It is achieved by the provision of a flexible medium such as rubber, springs, etc., between the two halves of the coupling.

Selection

In order to select the correct type and size of coupling, the following basic information should be known:

Power to be transmitted
(a) Normal.
(b) Maximum.
(c) Whether continuous or intermittent.

Characteristics of the drive
(a) Type of prime mover and associated equipment.
(b) Degree of impulsiveness of driven load.

Speed in revolutions per minute
(a) At which normal power is transmitted.
(b) At which maximum power is transmitted.
(c) Maximum speed.

Dimensions of shafts to be connected
(a) Actual diameter.
(b) Length of shaft extension.
(c) Full keyway particulars.

Selection

When the input drive is not steady (i.e. not from an electric motor), and/or the driven load is impulsive, the actual power is multiplied by a Service Factor from the Table 2 (page 13).

Selection Procedure

1. Nominal power in kW to be transmitted $=\mathrm{K}$.
2. Select appropriate load classification from Table 1, denoted as either S, M or H.
3. From Table 2, establish Service Factor(s) to be applied, taking into account hours of operation/day and prime mover $=f D$.
4. From Table 3 select factor for the required frequency of starts $/ \mathrm{hr}=\mathrm{fS}$.
5. Selection Power $\mathrm{Ks}=\mathrm{K} \times \mathrm{fD} \times \mathrm{fS}$
6. Equivalent power at $100 \mathrm{RPM}=\frac{\mathrm{Ks} \times 100}{\mathrm{RPM}}$
7. Check that coupling selected will accept the required shaft diameters. Should shaft diameter exceed maximum permissible, then re-select using next larger size of coupling.

Load Classification by Application

Table 1		Dry dock cranes		Planer feed chains	M
Agitators		Main hoist	(2)	Planer floor chains	M
		Auxiliary hoist	(2)	Planer tilting hoist	M
Pure liquids	S	Boom, luffing	(2)	Re-saw merry-go-round conveyor	M
Liquids and solids	M	Rotating, swing or slew	(3)	Roll cases	H
Liquids - variable density	M	Tracking, drive wheels	(4)	Slab conveyor	H
Blowers		Elevators		Small waste conveyor-belt	S
Centrifugal	S	Bucket - uniform load	S	Small waste conveyor-chain	M
Lobe	M	Bucket - heavy load	M	Sorting table	M
Vane	S	Bucket - continuous	S	Tipple hoist conveyor	M
Brewing and distilling		Centrifugal discharge	S	Tipple hoist drive	M
Bottling machinery	S	Escalators	S	Transfer conveyors	M
Brew kettles - continuous duty	S	Freight	M	Transfer rolls	M
Cookers - continuous duty	S	Gravity discharge	S	Tray drive	M
Mash tubs - continuous duty	S	Man lifts	*	Trimmer feed	M
Can filling machines		Passenger	*	Waste conveyor	M
		Extruders (plastic)		Machine tools	
Cane knives (1)	M	Film	S	Bending roll	M
Car dumpers	H	Sheet	S	Punch press - gear driven	H
Car pullers	M	Coating	S	Notching press - belt drive Plate planners	H
Clarifiers	S	Tubing	S	Tapping machine	H
Classifiers	M	Blow moulders	M	Other machine tools	
Clay working machinery		Pre-plasticiers	M	Main drives	M
Brick press	H	Fans		Auxiliary drives	S
Briquette machine	H	Centrifugal	S	Metal mills	
Clay working machinery	M	Cooling towers		Drawn bench carriage and	
Pug mill	M	Induced draft	*		M
Compressors		Forced draft	*	Pinch, dryer and scrubber	
Centrifugal	S	Induced draft	M	rolls, reversing	
Lobe	M	Large, mine etc.	M	Slitters	M
Reciprocating - multi-cylinder	M	Large, industrial	M	Table conveyors nonreversing	
Reciprocating - single cylinder	H	Light, small diameter	S	group drives	M
Conveyors - uniformly loaded or fed		Feeders		Individual drives	H
Apron	S	Apron	M	Reversing	
Assembly	S	Belt	M	Wire drawing and flattening machine	M
Belt	S	Disc	S	Wire winding machine	M
Bucket	S	Reciprocating	H	Mills, rotary type	
Chain	S	Screw	M	Ball (1)	M
Flight	S	Food industry		Cement kilns (1)	M
Oven	S	Beef slicer	M	Dryers and coolers (1)	M
Screw	S	Cereal cooker	S	Kilns other than cement	M
Conveyors - heavy duty not uniformly fed		Dough mixer	M	Pebble (1)	M
		Meat grinder	M	Rod, plain \& wedge bar (1)	M
Apron	M	Generators - not welding	S	Tumbling barrels	H
Assembly	M	Hammer mills	H	Mixers	
Belt	M	Hoists		Concrete mixers continuous	M
Bucket	M			Concrete mixers intermittent	M
Chain	M	Heavy duty	H M	Constant density	S
Flight	M	Medium duty	M	Variable density	M
Live roll	*	Skip hoist	M	Oil industry	
Oven	M	Laundry		Chillers	M
Reciprocating	H	Washers - reversing	M	Oil well pumping	*
Screw	M	Tumblers	M	Paraffin filter press	M
Shaker	H	Line shafts		Rotary kilns	M
Crane Drives - not dry dock		Driving processing equipment	M	Paper mills	
Main hoists	S	Light	S	Agitators (mixers)	M
Bridge travel	*	Other line shafts	S	Barker - auxiliaries hydraulic	M
Trolley travel	*	Lumber industry		Barker - mechanical	H
Crushers		Barkers, hydraulic, mechanical	M	Barking drum	H
Ore	H	Burner conveyor	M	Beater and pulper	M
Stone	H	Chain saw and drag saw	H	Bleacher	S
Sugar (1)	M	Chain transfer	H	Calenders	M
Dredges		Craneway transfer	H	Calenders - super	H
Cable reels	M	De-barking drumEdger feed	H	Converting machine except	
Conveyors M			M	cutters, platers	M
Cutter head drives	H	Gang feed	M	Conveyors	S
Jig drives ${ }^{\text {a }}$		Green chain	M	Couch	M
Manoeuvring winches M		Live rolls	H H	Cutters, platers	H
Pumps M		Log deck	H H	Cylinders	M
Screen drive H		Log haul - incline	H	Dryers	M
$\begin{array}{ll}\text { Stackers } & \text { M } \\ \text { Utility winches } & M\end{array}$		Log haul - well type	H	Fell stretcher	M
		Log turning device	H	Fell whipper	H
Utility winches M		Main log conveyor	H	Jordans	M
		Off bearing rolls	M	Log haul	H

Presses	M
Pulp machine reel	M
Stock chest	M
Suction roll	M
Washers and thickeners	M
Winders	M
Printing presses	
Pullers	
Barge haul	H
Pumps	
Centrifugal	S
Proportioning	M
Reciprocating	
single acting: 3 or more cylinders	M
double acting: 2 or more cylinders	M
single acting: 1 or 2 cylinders	
double acting: single cylinder	*
Rotary - gear type	S
Rotary - lobe, vane	S
Rubber and plastics industries	
Crackers (1)	H
Laboratory equipment	M
Mixed mills (1)	H
Refiners (1)	M
Rubber calenders (1)	M
Rubber mill, 2 on line (1)	M
Rubber mill, 3 on line (1)	S
Sheeter (1)	M
Tyre building machines	*
Tyre and tube press openers	
Tubers and strainers (1)	M
Warming mills (1)	M
Sand muller	M
Screens	
Air washing	S
Rotary, stone or gravel	M
Travelling water intake	S
Sewage disposal equipment	
Bar screens	S
Chemical feeders	S
Collectors	S
Dewatering screws	M
Scum breakers	M
Slow or rapid mixers	M
Thickeners	M
Vacuum filters	M
Slab pushers	M
Steering gear	
Stokers	S
Sugar industry	
Cane knives (1)	M
Crushers (1)	M
Mills (1)	M
Textile industry	
Batchers	M
Calenders	M
Cards	M
Dry cans	M
Dryers	M
Dyeing machinery	M
Looms	M
Mangles	M
Nappers	M
Pads	M
Range drives	*
Slashers	M
Soapers	M
Spinners	M
Tenter frames	M
Washers	M
Winders	M
Windlass	*

Key
S = Steady
M = Medium Impulsive
H = Highly Impulsive

* = Refer to Renold
(1) $=$ Select on 24 hours per day service factor only.
(2) $=$ Use service factor of 1.00 for any duration of service.
(3) = Use service factor of 1.25 for any duration of service.
(4) $=$ Use service factor of 1.50 for any duration of service.

Machinery characteristics and service factors listed in this catalogue are a guide only. Some applications (e.g. constant power) may require special considerations. Please consult Renold.

Service Factors and Selection

Table 2 Service Factor (fD)

Prime mover (Drive input)	Driven machinery characteristics			
	Duration service hours/day	Steady load	Medium impulsive	Highly impulsive
Electric, air \& hydraulic Motors or steam turbine (Steady input)	Intermittent - 3hrs/day max 3-10 over 10	$\begin{aligned} & 0.90 \\ & 1.00 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.25 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 1.75 \\ & 2.00 \end{aligned}$
Multi-cylinder I.C. engine (Medium impulsive input)	Intermittent - 3hrs/day max 3-10 over 10	$\begin{aligned} & 1.00 \\ & 1.25 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 1.50 \\ & 1.75 \end{aligned}$	$\begin{aligned} & 1.75 \\ & 2.00 \\ & 2.25 \end{aligned}$
Single-cylinder I.C. engine (Highly impulsive input)	Intermittent - 3hrs/day max 3-10 over 10	$\begin{aligned} & 1.25 \\ & 1.50 \\ & 1.75 \end{aligned}$	$\begin{aligned} & 1.50 \\ & 1.75 \\ & 2.00 \end{aligned}$	$\begin{aligned} & 2.00 \\ & 2.25 \\ & 2.50 \end{aligned}$

Table 3 Factor for Starts/Hour(fs)

No of starts per hour	$0-1$	$1-30$	$30-60$	$60-$
Factor	1,0	1,2	1,3	1,5

Example of Selection

Coupling is required to transmit 7.5 kW at 1440 RPM to connect an electric motor to a gear box driving a chain conveyor running for 18 hours/day and starting 15 times/hour. Shaft diameters $/ 55 \mathrm{~mm}$ respectively.
$\mathrm{K}=7.5 \mathrm{~kW}$
From Table 1 Load Classification $=M$ (medium impulsive)
From Table 2 Service Factor $f D=1.5$
From Table 3 fs = 1.2
Therefore selection kW is:-
$K s=K \times f D \times f S$
$=7.5 \times 1.5 \times 1.2$
$=13.5 \mathrm{~kW}$
Equivalent power at 100 RPM $=$

$$
\begin{aligned}
& =\frac{K s \times 100}{R P M} \\
& =\frac{13.5 \times 100}{1440}
\end{aligned}
$$

$$
=0.9375 \mathrm{~kW} @ 100 \mathrm{RPM}
$$

From page 17 selection is RSC110 (644911)
(maximum bore 55 mm).

Key Stress

1. Permissible key stress $=70 \mathrm{~N} / \mathrm{mm}^{2}$
2. Nominal torque $\mathrm{T}_{\text {км }}=\mathrm{K} \times 9550$ / RPM Nm
3. Force at key $\mathrm{F}=\mathrm{T}_{\text {km }} / \mathrm{r}$
4. Shaft Rad r. metres
5. Key area $A=J \times$ HUB length $m m$ (Obtain from relevant catalogue page).
6. Key stress $\mathrm{fk}=\mathrm{F} / \mathrm{A} \mathrm{N} / \mathrm{mm}^{2}$
7. If resultant stress is less than $70 \mathrm{~N} / \mathrm{mm}^{2}$ key stress is acceptable.
If resultant fk is greater than 70, consider either two keyways or extending hub length.
8. Example:
$T_{\text {KM }}=7.5 \times 9550 / 1440=49.7 \mathrm{Nm}$
$r=55 / 2=27.5 \mathrm{~mm} \div 1000=0.0275 \mathrm{~m}$
$\mathrm{F}=49.7 / 0.0275=1741 \mathrm{~N}$
$A=16 \times 45=720 \mathrm{~mm}^{2}$
$\mathrm{fk}=1741 / 720=2.4 \mathrm{M} / \mathrm{mm}^{2}$
Selection is therefore good.

For operation above 80% of the declared maximum coupling speed it is recommended that the coupling is dynamically balanced.

WARNING

Rotating equipment must be provided with a suitable guard before operating or injury may result.

Key and Keyway Dimensions

Metric (mm)
Keyways comply with BS4235: Part 1: 1972

Shaft dia.		Key \& keyway		
Over	Incl.	J	K	L
6	8	2	2	1.0
8	10	3	3	1.4
10	12	4	4	1.8
12	17	5	5	2.3
17	22	6	6	2.8
22	30	8	7	3.3
30	38	10	8	3.3
38	44	12	8	3.3
44	50	14	9	3.8
50	58	16	10	4.3
58	65	18	11	4.4
65	75	20	12	4.9
75	85	22	14	5.4
85	95	25	14	5.4
95	110	28	16	6.4
110	130	32	18	7.4
130	150	36	20	8.4
150	170	40	22	9.4
170	200	45	25	10.4
200	230	50	28	11.4

Imperial (inches)
Keyways comply with BS46: Part 1: 1958

Shaft dia.		Key \& keyway		
Over	Incl.	J	K	L
0.25	0.05	0.125	0.125	0.060
0.50	0.75	0.187	0.187	0.088
0.75	1.00	0.250	0.250	0.115
1.00	1.25	0.312	0.250	0.090
1.25	1.50	0.375	0.250	0.085
1.50	1.75	0.437	0.312	0.112
1.75	2.00	0.500	0.312	0.108
2.00	2.50	0.625	0.437	0.162
2.50	3.00	0.750	0.500	0.185
3.00	3.50	0.875	0.625	0.245
3.50	4.00	1.000	0.750	0.293
4.00	5.00	1.250	0.875	0.340
5.00	6.00	1.500	1.000	0.384

Keyway dimensions [fig 01]
Parallel keyways are supplied unless customer states otherwise.

Chainflex

An all metal flexible yet torsionally stiff coupling, suitable for use in arduous working
conditions.

Coupling capacity

- Maximum power @ 100RPM: 90kW
- Maximum torque: 8595 Nm

Features and benefits

- Torsionally stiff for use as a positive drive connection.
- Easy installation for ease of maintenance
- Misalignment capabilities allowing flexibility in installation.
- Hardened teeth giving long life with high torque capacity.
- All metal coupling for use in hostile environments.
- Taper bush bores available for ease of maintenance.
- Easy removal of chain for high speed disconnection of driven and driving machines.
- Precison moulded plastic cover with seals for lubrication retention and dust protection.

Standard range comprises

- Shaft to Shaft
- Taper Bush or Parallel Bored

Applications

- Fans
- Feeders
- Kiln Dryers
- Line Shafts
- Pump Drives

Construction details

Hardened Steel Sprockets
Renold Duplex Chain
Moulded Cover

Chainflex

Coupling size with cover	$\left\|\begin{array}{c} \text { Power/ } \\ 100 \mathrm{rpm} \\ \mathrm{~kW} \end{array}\right\|$	Torque nomina Nm	Speed max rpm	Type B Bore		Type F \& H			Dimensions						Offset Max mm	End float mm
						$\begin{aligned} & \text { Bush } \\ & \text { size } \end{aligned}$	Bore		$\begin{gathered} \mathrm{B} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{C} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \hline \mathrm{D} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{F} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \text { Mass } \\ \text { kg } \end{gathered}$		
				Max	Min		Max	Min								
C28BB K	0.55	52.5	3500	25	12	N/A	-	-	42	21	72	62	3	0.5	0.25	0.7
C33BB K	1	95.5	3000	30	12	N/A	-	-	50	25	83	74	5.1	1.0	0.25	1.0
C43 \# \# K	2.25	215	2250	40	14	TB1008	28	9	59	32	108	99	6.9	2.1	0.25	1.3
C63 \# \# K	7.5	716	1500	60	19	TB1615	42	14	91	51	159	148	8.9	7.1	0.30	2.0
C81 \# \# K	17.5	1671	1200	80	24	TB2525	60	19	117	63	206	197	16.2	16	0.38	2.5
C101BB K	33.5	3200	960	100	32	N/A	-	-	144	76	258	245	18.8	30	0.38	3.3
C122BB K	60	5730	750	130	50	N/A	-	-	182	101	311	295	25.1	61	0.50	3.8
C140BB K	90	8595	700	140	55	N/A	-	-	195	114	357	343	31.2	85	0.50	4.6

Component Spares

With cover		Without cover		Cover	Half body pilot bored	Half body taper bored F type	Half body taper bored H type	Chain with connectors
Coupling number	Product number	Coupling number	Product number					
C28BBK	642602	C28BB	642802	616602	642080	-	-	114500/96620
C33BBK	642603	C33BB	642803	616603	642081	-	-	114038/96620
C43BBK	642604	C43BB	642804	616604	642082	-	-	114046/96620
C43FFK	642604/77	C43FF	642804/77	616604	-	642082/77	642082/88	114046/96620
C63BBK	642606	C63BB	642806	616606	642084	-	-	114066/96620
C63FFK	642606/77	C63FF	642806/77	616606	-	642084/77	642084/88	114066/96620
C81BBK	642608	C81BB	642808	616608	642086	-	-	114088/96620
C81FFK	642608/77	C81FF	642808/77	616608	-	642086/77	642086/88	114088/96620
C101BBK	642610	C101BB	642810	616610	642088	-	-	114106/96620
C122BBK	642612	C122BB	642812	616612	642090	-	-	114127/96620
C140BBK	642614	C140BB	642814	616614	642092	-	-	114147/96620

