() mayr $^{\bullet}$

 your reliable partner
ROBATIC ${ }^{\circledR}$, ROBA-quick ${ }^{\circledR}$ ROBA ${ }^{\circledR}$-takt

Electromagnetic Clutches and Brakes, Clutch Brake Units

mayr ${ }^{\oplus}$ - your reliable partner

What is your definition of reliability?

We define reliability as the highest product quality and competent service from the initial contact right up to the after-sale service

- Largest variety in selection of standard products
- Market leader's competence arising from decades of experience in the development, production and application of power transmission products
- Optimum product selection due to our expertise in design and calculation
- Reliable component dimensioning
- Intelligent platform (modular construction)
- High flexibility for individual requests and customer-tailored solutions
- Quality-inspected suppliers
- Modern, highly robust materials
- In-house production
- 100\% quality control
- Certified according to DIN EN ISO 9001
- Personal supervision from the first contact right up to the after-sale service
- Worldwide local service network
- CAD-files available online to save time and costs during construction
- 24-hour delivery service for preferred products
- Short delivery times and on-time delivery
- Unlimited replacement part availability worldwide

Your advantages when using electromagnetic ROBATIC ${ }^{\oplus}$-clutches, ROBA ${ }^{\oplus}$-quick brakes and ROBA ${ }^{\oplus}$-takt clutch brake modules

- Easy integration into your machine:

The optimised magnetic circuit minimises the magnetic leakage flux. The high performance density and torque security based on it allow compact dimensions and an easy integration in your construction.

- High reliability and operational safety:

The switching behaviour is constant during the entire service lifetime. Therefore, the positioning accuracy and reliability of the clutches or brakes respectively and herewith the operational safety of your machine are increased.

- Less operating expenses and maintenance charges:
The large friction surface and the smooth switching behaviour increase the wear resistance. Therefore, the clutches and brakes are maintenance-free until wear limit of the friction surfaces. There is no re-adjustment work and the resulting operational interruptions. Therefore, the operating expenses and maintenance charges are very low.

Increase of productivity:

Short switching times allow high switching frequencies and increase the productivity of your machine.

All products are subject to comprehensive investigations and tests regarding loads. Only after having passed the strongest long-time tests and when they fully meet all the technical requirements and proof their reliability they are included in our delivery programme.

Electromagnetic clutches and brakes - Guidelines

Description and operating conditions

1. The catalogue values, in particular the values for the nominal torque, are reference values and may deviate in individual cases.
2. During dimensioning, please contact the manufacturers for consultation on installation conditions, torque fluctuations, permitted friction work, run-in behaviour, wear and ambient conditions.
3. The clutches and brakes are designed for dry running. If the friction surfaces come into contact with oil, grease or similar substances, there may be a severe decrease in torque.
4. When the devices are switched off, voltage peaks may occur due to the counter-induction on the magnetic coils, causing in extreme cases damage to the magnetic coil and therefore to the components. For this reason, excess voltage must be damped using a suitable "protection circuit" (e.g. using a varistor).
5. The surfaces on the clutches and the brakes are corrosionresistant except for the friction surfaces. However, in operation in extreme ambient conditions or in outdoor conditions with direct weather influences, additional protective measures are necessary.
6. The connection cable or connection strands on the clutches and brakes have a surface coating which is not resistant against all influences. After contact with chemical substances, please check compatibility.
7. The clutches and brakes are designed for a relative duty cycle of 100 \%.

Torque characteristics

In new condition, approx. 50 \% of the catalogue nomina torque (M_{2}) is transmitted.

The components reach the catalogue nominal torque when the friction surfaces are run in. As a rough guideline value, approx. 100 - 200 switchings in dynamic operation, a typical speed of approx. 500 to 1000 rpm and a medium friction work (see Table 1) can be given.

Longer slipping of the clutch or brake is to be avoided, especially at low speeds, as this can cause scoring formation and therefore damage to the friction surfaces. Clutches or brakes used in static or virtually static operation do not reach the nominal torque $\left(M_{2}\right)$.

If requested, the clutches or brakes can also be run in at the place of manufacture. This is most expedient for Type 540.140 with complete bearing.
However, Types 500.1_ _ and 520.1_ _ can also be run in under certain conditions. For this, please ensure exact installation customer-side according to the specification in order to reproduce the friction conditions as precisely as possible. At the same time, the "friction carbon" produced must not be rubbed off. If the clutches are run in to the nominal torque at the place of manufacture and then operated in static or virtually static mode, please allow for a drop to approx. $60-70 \%$ of the nominal torque. This is the case if the clutch or brake falls below the speed or friction work $\left(Q_{a}\right)$ stated in Table 1.
For static and virtually static applications, we therefore recommend our "double-flow designs", Type series 500.3_ _. 0 (see pages 12/13).

Size	Friction work $\mathbf{Q}_{\mathbf{a}}$ $[\mathbf{J}]$	Clutch or brake speed $\mathbf{n}_{\text {min. }}$ [rpm]
$\mathbf{3}$	16	300
$\mathbf{4}$	29	250
$\mathbf{5}$	55	200
$\mathbf{6}$	105	160
$\mathbf{7}$	200	130
$\mathbf{8}$	380	120
$\mathbf{9}$	600	100

Table 1

Run-in conditions

For running in, different procedures can be used according to the Type design. An "artificial" run-in is to be carried out if a run-in procedure is not possible in the machine due to the type of application (see Section "Torque Characteristics"), e. g. due to insufficient friction work, speed or switching frequencies.

For the run-in conditions of the individual clutch and brake types, please see the respective Installation and Operational Instructions on our website www.mayr.com

Electrical connection and wiring

DC current is necessary for the operation of the clutch or brake. The coil voltage is indicated on the Type tag as well as on the brake body and is designed according to the DIN IEC $60038(\pm 10 \%$ tolerance). Operation can take place with alternating voltage using a rectifier or another suitable DC power supply. Please follow the exact connections according to the wiring diagram. The manufacturer and the user must observe the applicable regulations and standards (e.g. DIN EN 60204-1 and DIN VDE 0580). Their observance must be guaranteed and double-checked!

Electrical wiring

24 VDC and 104 VDC can be selected as standard voltages 24 VDC: Operation with a mains adaptor of 24 VDC
104 VDC: Half-wave rectifier with 230 VAC mains voltages

Earthing connection

The brake is designed for Protection Class I. This protection covers not only the basic insulation, but also the connection of all conductive parts to the protective conductor (PE) on the fixed installation. If the basic insulation fails, no contact voltage will remain. Please carry out a standardised inspection of the protective conductor connections to all contactable metal parts!

Device fuses

To protect against damage from short circuits, please add suitable device fuses to the mains cable.

Protection circuit

When using DC-side switching, the coil must be protected by a suitable protection circuit according to VDE 0580. This is achieved by using a sufficiently dimensioned varistor, which has already been integrated into the mayr ${ }^{\circledR}$ rectifier. To protect the switching contact from consumption when using DC-side switching, additional protective measures are necessary (e.g. series connection of switching contacts). The switching contacts used should have a minimum contact opening of 3 mm and should be suitable for inductive load switching. Please make sure on selection that the rated voltage and the rated operation current are sufficient. Depending on the application, the switching contact can also be protected by other protection circuits (e.g. mayr ${ }^{\circledR}$ spark quenching units), although this may of course then alter the switching times.

Electromagnetic clutches and brakes

ROBATIC ${ }^{\circledR}$

Electromagnetic, 'energise to engage' pole face clutches

ROBA ${ }^{\circledR}$-quick

Electromagnetic, 'energise to engage' pole face brakes

ROBA ${ }^{\oplus}$-takt clutch brake module

Clutch brake unit

Contents

ROBATIC ${ }^{\circledR}$-electromagnetic clutch

Constant switching performance throughout the entire service lifetime

] High torque security
due to an optimised magnetic circuit and the new design of the ROBATIC ${ }^{\circledR}$. Therefore higher capacities due to less magnetic leakage flux.

- Half the wear
due to large friction surfaces and smooth switching behaviour, the ROBATIC ${ }^{\oplus}$ has a higher wear resistance (approx. 100 \%)
- Large internal diameters of the magnetic coil bodies
therefore large permitted shaft diameters
- Low-noise
] Short switching times/high switching frequencies
- Correct function up to wear limit

Functional principle
ROBATIC ${ }^{\circledR}$-clutches are 'energise to engage', electromagnetic pole face units.
When DC voltage is applied to the magnetic coil (1), a magnetic field is built up. The armature disk (3) is attracted to the rotor (2) with friction lining (4). The torque is transmitted via frictional locking.
The torque is transmitted from the drive element (6) via the armature disk (3) and the rotor (2) to the output shaft (7). After having deenergised the coil, the membrane spring (5) draws back the armature disk (3) to the drive element (e.g. belt pulley), and the torque transmission is then disconnected.

your reliable partner

Summary of constructional designs ROBATIC ${ }^{\circledR}$

ROBATIC ${ }^{\oplus}$ standard

Sizes 3 to 9
Type 500

Sizes 3 to 7	without accessories	Type	500.200 .0
Type 500.20_.0	with flange hub	Type	500.201 .0
Sizes 8 to 9	without accessories	Type	500.10^{\ldots}
Type 500.1_ _	with flange hub	Type	$500.11_{\text {_ }}$

Pages 8-11
ROBATIC ${ }^{\circledR}$
double-flow design

Sizes 3 to 7
Type 500.30_

Sizes 3 to 7
Type 500.21_. 0
Sizes 8 to 9
Type 580.1_0
with small bolt circle
without accessories Type 500.300.0
with flange hub Type 500.301.0

Pages 12-13

ROBATIC ${ }^{\circledR}$

small mounting diameter

ROBATIC ${ }^{\circledR}$
with bearing-supported coil carrier

Sizes 3 to 9
Type 540.1_

without accessories	Type Type	500.210 .0
with flange hub		
without accessories	Type	580.100
with flange hub	Type	580.110

ROBATIC ${ }^{\circledR}$

with bearing-supported flange

Sizes 3 to 9	Type 540.14 _
Type 540.14	

ROBATIC ${ }^{\circledR}$-electromagnetic clutch

Sizes 3-7

Type 500.200.0
Standard

Type 500.201.0
Standard with flange hub

Order number

Example: 6 / 500.201.0 / 24 / 35 / 40 / DIN 6885/1

Technical data				Size				
				3	4	5	6	7
Nominal torque ${ }^{1)}$	Type 500.20_. 0	M_{2}	[Nm]	10	20	45	80	160
Electrical power		P_{20}	[W]	18	26	37	53	79
Maximum speed		$\mathrm{n}_{\text {max }}$	[rpm]	8600	7000	6100	5800	4500
Weight	without accessories	m	[kg]	0.68	1	2.15	3.48	6.6
	with flange hub	m	[kg]	0.75	1.31	2.35	4.03	7.5
Mass moment of inertia	Rotor ${ }^{2)}$	$\mathrm{l}_{\text {eig }}$	[$10^{-4} \mathrm{kgm}^{2}$]	2	5.14	13.25	29.85	86.75
	Armature disk	$\mathrm{I}_{\text {eig }}$	[$10^{-4} \mathrm{kgm}^{2}$]	0.76	1.92	6.86	17.56	52.86
	Flange hub ${ }^{2)}$ + Armature disk	$\mathrm{I}_{\text {eig }}$	[$10^{-4} \mathrm{kgm}^{2}$]	1.02	2.75	8.63	24.66	70.63

1) Please observe run-in conditions or minimum speed (see page 4).

Standard voltages 24 VDC; 104 VDC
2) With max. bore

Permitted voltage tolerances acc. IEC $38+/-10 \%$.

Bores			Size				
			3	4	5	6	7
$\varnothing d^{H 7}$	Preferred bores	[mm]	10; 15	17; 20	20; 25; 30	25; 30; 35	30; 40; 50
	min.	[mm]	9	11	13	13	20
	max.	[mm]	25	35	42	55	65
Ød $\mathrm{c}^{\text {H7 }}$	Preferred bores	[mm]	17; 20	20; 25	25; 30	30; 40	40; 50
	min.	[mm]	9	13	15	20	23
	max.	[mm]	20	30	$35^{\text {3) }}$	45	60

3) Up to Ø 32 keyway acc. DIN 6885/1, over Ø 32 keyway acc. DIN 6885/3

Dimensions [mm]	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
	0.2	0.2	0.2	0.3	0.3
\mathbf{b}	4.5	4	5.5	5.5	7.5
\mathbf{D}	73.5	92	115	140	177
$\mathbf{D}_{\mathbf{1}}$	80	100	125	150	190
$\mathbf{D}_{\mathbf{2}}$	70	88	110	140	170
\mathbf{F}	33	41.5	47	63	82
\mathbf{G}	36	49	57.5	74	95
\mathbf{g}	29.5	44	47	66	84
$\mathbf{H}_{\mathbf{n} 9}$	80	100	125	150	190
\mathbf{K}	3×4.6	3×6.4	3×7.0	3×10.4	3×10.2
\mathbf{k}	1.7	2.3	2.7	2.8	2.7
\mathbf{L}	28.1	31.2	36.0	40.8	46.1
$\mathbf{L}_{\mathbf{1}}$	24	26.5	30	33.5	37.5
$\mathbf{\mathbf { L } _ { \mathbf { 2 } }}$	20	22	28	32	36
\mathbf{I}	20.5	22	25	27.5	31.5

Dimensions [mm]	Size				
	3	4	5	6	7
I_{1}	3.5	4.3	5.2	6	7
I_{2}	16	17	22	25	27
M	60	76	95	120	150
M_{1}	72	90	112	137	175
0	48.1	53.2	64.1	72.9	82.2
S	4×4.8	4×5.7	4×6.8	4×6.8	4×9.2
s_{1}	$3 \times \mathrm{M} 4$	$3 \times \mathrm{M} 5$	$3 \times \mathrm{M} 6$	$3 \times \mathrm{M} 8$	$3 \times \mathrm{M} 8$
t	3.9	4.5	5.8	7.0	8.3
t_{1}	5.2	7.2	8.7	8.0	9.7
Permitted shaft mis-	0.05	0.05	0.05	0.05	0.1
alignm. and centre offset \mathbf{V}_{1}	0.1	0.15	0.15	0.15	0.2
W	5	5	6	8	8
Z^{H8}	42	52	62	80	100
z	3.5	4.5	5	6	6

ROBATIC ${ }^{\circledR}$-electromagnetic clutch

Standard

Sizes 8-9

Type 500.100
Standard with connection strand

Type 500.1_2
Standard
with connection terminal

Type 500.1_

Type 500.110
Standard with flange hub with connection strand

Order number

your reliable partner
Standard
Sizes 8-9
Type 500.1

Technical data				Size	
				8	9
Nominal torque ${ }^{1)}$	Type 500.1_-	M_{2}	[Nm]	320	640
Electrical power		P_{20}	[W]	61	82
Maximum speed		$\mathrm{n}_{\text {max }}$	[rpm]	3000	2200
Weight	without accessories	m	[kg]	10.1	20.5
	with flange hub	m	[kg]	13	25
Mass moment of inertia	Rotor ${ }^{2)}$	$l_{\text {eig }}$	[$10^{-4} \mathrm{kgm}^{2}$]	165	450
	Armature disk	$\mathrm{l}_{\text {eig }}$	[$10^{-4} \mathrm{kgm}^{2}$]	81	315
	Flange hub ${ }^{2)}$ + Armature disk	$\mathrm{I}_{\text {eig }}$	[$10^{-4} \mathrm{kgm}^{2}$]	107	381

1) Please observe run-in conditions or minimum speed (see page 4).

Standard voltages 24 VDC; 104 VDC
2) With max. bore

Permitted voltage tolerances acc. IEC $38+/-10 \%$.

Bores			Size	
			8	9
$\varnothing d^{\text {H7 }}$	Preferred bores	[mm]	40; 50; 60	50; 60; 70
	min.	[mm]	24	34
	max.	[mm]	70	80
Ød ${ }_{1}{ }^{\text {H7 }}$	Preferred bores	[mm]	40; 50	50; 60
	min.	[mm]	24	27
	max.	[mm]	60	80

Dimensions		
[mm]	Size	
\mathbf{a}	$\mathbf{8}$	$\mathbf{9}$
\mathbf{b}	0.5	0.5
\mathbf{D}	8	9
$\mathbf{D}_{\mathbf{1}}$	193	251
$\mathbf{D}_{\mathbf{2}}$	200	251
\mathbf{F}^{3}	185	242
\mathbf{G}	-	-
\mathbf{g}	91	111
$\mathbf{H}_{\mathbf{n} 9}$	84	104
\mathbf{i}	230	290
\mathbf{K}	8	9.5
\mathbf{k}	3×11	4×20
\mathbf{L}	2	4.2
$\mathbf{L}_{\mathbf{2}}$	55.1	63.9
\mathbf{I}	45.3	53.9
\mathbf{I}	40	51

[^0] turning is allowed for in the standard range.

Dimensions [mm]	Size	
	8	9
I_{2}	36.3	42.9
I_{4}	5	6
M	158	210
M	215	270
N	93.9	116.8
0	100.4	117.8
s	4×9	4×11
S_{1}	$3 \times \mathrm{M} 10$	$4 \times \mathrm{M} 12$
t	10.6	12.4
t_{1}	8.5	11.8
Permitted shaft mis-	0.1	0.1
alignm. and centre offset	0.2	0.25
W	15	20
$\mathrm{Z}^{\text {H8 }}$	100	125
z	4	4

We reserve the right to make dimensional and constructional alterations.

ROBATIC ${ }^{\circledR}$-electromagnetic clutch

Double-flow design Sizes 3-7

Type 500.300
Double-flow design

Type 500.301
Double-flow design with flange hub

Performance Characteristics

Preferred for static or virtually static applications
\square High torque security with low friction work
\square No organic friction lining installed (environmentally friendly)

Order number

Example: 6 / 500.301 / 24 / 35 / 40
your reliable partner

Double-flow design

Sizes 3-7
Type 500.30_. 0

Technical data				Size				
				3	4	5	6	7
Nominal torque ${ }^{112)}(+50 \% /-12 \%)$ Type 500.30_0		M_{2}	[Nm]	20	40	90	160	320
Electrical power		P_{20}	[W]	17	25	37	50	79
Maximum speed ${ }^{3}$		$\mathrm{n}_{\text {max }}$	[rpm]	8600	7000	6100	5800	4500
Weight	without accessories	m	[kg]	0.65	1.16	2.02	3.3	6.22
	with flange hub	m	[kg]	0.76	1.5	2.53	4.46	8.09
Mass moment of inertia	Rotor ${ }^{4)}$	$\mathrm{I}_{\text {eig }}$	[$10^{-4} \mathrm{kgm}^{2}$]	2.02	5.56	14.08	32.26	106.36
	Armature disk	$\mathrm{I}_{\text {eig }}$	[$10^{-4} \mathrm{kgm}^{2}$]	1.08	2.69	7.34	19.92	61.57
	Flange hub ${ }^{4)}$ + Armature disk	$\mathrm{I}_{\text {eig }}$	[$10^{-4} \mathrm{kgm}^{2}$]	1.46	3.98	10.26	30.43	89.01

1) Please observe run-in conditions or minimum speed (see page 4).

Standard voltages 24 VDC; 104 VDC.
2) During permanent synchronisation without friction work, the torque may

Permitted voltage tolerances acc. IEC $38+/-10 \%$. drop to $50 \%-60 \%$ of the nominal torque.
3) Max. switching speed is dependent on friction work and switching frequency - if necessary, please contact the manufacturer.
4) With max. bore

5) For torques smaller than the nominal torque M_{2}, bores below $d_{\text {min }}$ are possible on request.

Dimensions [mm]	\mathbf{y}	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
\mathbf{a}	0.2	0.2	0.2	0.3	0.3
\mathbf{b}	4.5	4	5.5	5.5	7.5
\mathbf{D}	79	99	123.5	148	188
$\mathbf{D}_{\mathbf{1}}$	80	100	125	150	190
$\mathbf{D}_{\mathbf{2}}$	70	88	110	140	170
\mathbf{F}^{6}	-	-	-	-	-
\mathbf{G}	32	49	55	73	95
\mathbf{g}	29.5	44	47	66	84
$\mathbf{H}_{\mathbf{n} 9}$	80	100	125	150	190
\mathbf{K}	3×8	3×10	3×12	3×16	3×14
\mathbf{k}	3.2	3.8	4.3	6	4.4
\mathbf{L}	28.1	31.25	35.7	40.7	46.1
$\mathbf{L}_{\mathbf{1}}$	23.5	26.5	30	33.5	37.5
$\mathbf{L}_{\mathbf{2}}$	20	22	28	32	36
\mathbf{I}	20	22	25	27.5	31.5

6) Turning for RS-ball bearing according to customer specifications - no turning is allowed for in the standard range.

Dimensions [mm]	Size				
	3	4	5	6	7
I_{1}	3.5	4.3	5.2	6	7
I_{2}	16	17	22	25	27
M	60	76	95	120	150
M_{1}	72	90	112	137	175
0	48.1	53.25	63.7	72.7	82.2
s	4×4.8	4×5.7	4×6.8	4×6.8	4×9.2
s_{1}	$3 \times \mathrm{M} 4$	$3 \times \mathrm{M} 5$	$3 \times \mathrm{M} 6$	$3 \times \mathrm{M} 8$	$3 \times \mathrm{M} 8$
t	4.3	4.45	5.5	6.9	8.3
t_{1}	5	7.2	8.7	14	13.7
Permitted shaft mis-	0.05	0.05	0.05	0.05	0.1
alignm. and centre offset \mathbf{V}_{1}	0.1	0.15	0.15	0.15	0.2
W	5	5	6	8	8
$Z^{\text {H8 }}$	42	52	62	80	100
z	3.5	4.5	5	6	6

We reserve the right to make dimensional and constructional alterations.

ROBATIC ${ }^{\circledR}$-electromagnetic clutch

Small mounting diameter
Sizes 3-7
Type 500.21_. 0

Type 500.210.0 Small mounting diameter

Type 500.211.0
Small mounting diameter with flange hub

Order number

Example: 6 / 500.211.0 / 24 / 40 / 30 / DIN 6885/1
your reliable partner

Small mounting diameter

Sizes 3-7
Type 500.21_. 0

Technical data				Size				
				3	4	5	6	7
Nominal torque ${ }^{11}$	Type 500.21_. 0	M	[Nm]	10	20	45	80	160
Electrical power		P_{20}	[W]	18	26	37	53	79
Maximum speed		$\mathrm{n}_{\text {max }}$	[rpm]	8600	7000	6100	5800	4500
Weight	without accessories	m	[kg]	0.65	1.1	2.1	3.4	6.4
	with flange hub	m	[kg]	0.7	1.16	2.25	3.6	6.95
Mass moment of inertia	Rotor ${ }^{2)}$	$\mathrm{l}_{\text {eig }}$	[$10^{-4} \mathrm{kgm}^{2}$]	2.2	5.3	13.47	32.31	90.13
	Armature disk	$\mathrm{I}_{\text {eig }}$	[$10-4 \mathrm{kgm}^{2}$]	0.7	1.79	6.28	15.77	48.1
	Flange hub ${ }^{2)}$ + Armature disk	$\mathrm{I}_{\text {eig }}$	[$10^{-4} \mathrm{kgm}^{2}$]	0.8	1.97	7.19	17.45	55.2

1) Please observe run-in conditions or minimum speed (see page 4).

Standard voltages 24 VDC; 104 VDC
2) With max. bore

Permitted voltage tolerances acc. IEC $38+/-10 \%$.

Bores			Size				
			3	4	5	6	7
$\varnothing d^{17}$	Preferred bores	[mm]	10; 15	17; 20	20; 25; 30	25; 30; 35	30; 40; 50
	min.	[mm]	9	11	13	13	20
	max.	[mm]	20	28	35	42	55
Ød $\mathrm{d}^{\text {H7 }}$	Preferred bores	[mm]	10; 15	17; 20	20; 25	25; 30	30; 40
	min.	[mm]	8	9	13	15	20
	max.	[mm]	17	20	30	$35^{3)}$	45

3) Up to Ø 32 keyway acc. DIN 6885/1, over Ø 32 keyway acc. DIN 6885/3

Dimensions [mm]	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
\mathbf{a}	0.2	0.2	0.2	0.3	0.3
\mathbf{b}	4.5	4	5.5	5.5	7.5
\mathbf{D}	73.5	92	115	140	177
$\mathbf{D}_{\mathbf{1}}$	80	100	125	150	190
$\mathbf{D}_{\mathbf{2}}$	54	70	88	110	140
\mathbf{F}	26	36.5	41.5	47	63
\mathbf{G}	36	49	57.5	74	95
\mathbf{g}	27	29.5	44	47	66
$\mathbf{H}_{\mathbf{n} 9}$	80	100	125	150	190
\mathbf{K}	3×4.3	3×4.6	3×6.4	3×7	3×10.4
\mathbf{k}	1.6	1.7	2.3	2.7	2.8
\mathbf{L}	28.1	31.1	36.0	40.4	45.8
$\mathbf{L}_{\mathbf{1}}$	24	26.5	30	33.5	37.5
$\mathbf{L}_{\mathbf{2}}$	15	20	22	28	32
\mathbf{I}	22	24	27	30	34

Dimensions [mm]	Size				
	3	4	5	6	7
I_{1}	3.5	4.3	5.2	6	7
I_{2}	11.5	16	17	22	25
M	46	60	76	95	120
M_{1}	72	90	112	137	175
0	43.1	51.1	58.1	68.8	77.9
s	4×4.5	4×5.7	4×6.8	4×6.8	4×9.2
s_{1}	$3 \times \mathrm{M} 3$	$3 \times \mathrm{M} 4$	$3 \times \mathrm{M} 5$	$3 \times \mathrm{M6}$	$3 \times \mathrm{M} 8$
t	3.9	4.4	5.8	6.6	8.0
t_{1}	4.1	5.2	6.7	8.7	8.0
Permitted shaft misalignm. and centre offset \mathbf{V}_{1}	0.05	0.05	0.05	0.05	0.1
	0.1	0.15	0.15	0.15	0.2
W	5	5	6	8	8
$Z^{\text {H8 }}$	35	42	52	62	80
z	2	2.5	3	3.5	3.5

We reserve the right to make dimensional and
constructional alterations.

ROBATIC ${ }^{\circledR}$-electromagnetic clutch

Small mounting diameter

Type 580.100
Coil carrier with small bolt circle
Sizes 8-9

Type 580.1_0

Type 580.110
Coil carrier with small bolt circle and flange hub

Bore for
screws DIN 6912, 7984
with spring ring DIN 7980

Order number

Example: 8 / 580.110 / 24 / 40 / 40

Small mounting diameter

Sizes 8-9
Type 580.1_0

Technical data				Size	
				8	9
Nominal torque ${ }^{1)}$	Type 580.1_0	M_{2}	[Nm]	320	640
Electrical power		P_{20}	[W]	74	77
Maximum speed		$\mathrm{n}_{\text {max }}$	[rpm]	3000	2200
Weight	without accessories	m	[kg]	10.1	20.5
	with flange hub	m	[kg]	13	23.5
Mass moment of inertia	Rotor ${ }^{2)}$	$\mathrm{I}_{\text {eig }}$	[$10^{-4} \mathrm{kgm}^{2}$]	165	450
	Armature disk	$\mathrm{I}_{\text {eig }}$	[10-4 kgm^{2}]	81	315
	Flange hub ${ }^{2)}$ + Armature disk	$\mathrm{I}_{\text {eig }}$	[$10^{-4} \mathrm{kgm}^{2}$]	107	381

) Please observe run-in conditions or minimum speed (see page 4).
Standard voltages 24 VDC; 104 VDC.
) With max. bore
Permitted voltage tolerances acc. IEC $38+/-10 \%$.

Bores			Size	
			8	9
Ød ${ }^{\text {H7 }}$	Preferred bores	[mm]	40; 50; 60	50; 60; 70
	\min.	[mm]	24	34
	max.	[mm]	70	80
Ød $\mathrm{c}^{\text {H7 }}$	Preferred bores	[mm]	40; 50	50; 60
	min.	[mm]	24	27
	max.	[mm]	60	80

Dimensions [mm]	Size	
\mathbf{a}	$\mathbf{8}$	$\mathbf{9}$
\mathbf{B}	0.5	0.5
\mathbf{D}	193	3
$\mathbf{D}_{\mathbf{1}}$	200	251
$\mathbf{D}_{\mathbf{2}}$	185	251
\mathbf{F}^{3}	-	242
\mathbf{G}	91	-
\mathbf{g}	84	111
$\mathbf{H}_{\mathbf{n} 9}$	230	104
\mathbf{i}	8	290
\mathbf{K}	2×11	9.5
\mathbf{k}	55.1	4×20
\mathbf{L}	45.3	4.2
$\mathbf{L}_{\mathbf{2}}$	44	63.9
I	40	53.9
$\mathbf{I}_{\mathbf{1}}$		47

3) Turning for RS-ball bearing according to customer specifications - no turning is allowed for in the standard range.

Dimensions [mm]	Size	
	8	9
t	10.6	12.4
I_{2}	36.3	42.9
M	158	210
M_{2}	184	235
N	93.9	116.8
0	100.4	117.8
S	13.5	13.5
S_{1}	3×8.4	3×8.4
s_{1}	$3 \times \mathrm{M} 10$	$4 \times \mathrm{M} 12$
t_{1}	8.5	11.8
Permitted shaft mis-	0.1	0.1
alignm. and centre offset	0.2	0.25
W	15	20
Z^{H}	100	125
z	4	4

We reserve the right to make dimensional and constructional alterations.

ROBATIC ${ }^{\circledR}$-electromagnetic clutch

With bearing-supported coil carrier Sizes 3-9

Type 540.100
With bearing-supported coil carrier

Type 540.1_ _

Type 540.110 With bearing-supported coil carrier and flange hub

Type 540.1_2 with connection terminal

Order number

your reliable partner
With bearing-supported coil carrier
Sizes 3-9
Type 540.1

Technical data				Size						
				3	4	5	6	7	8	9
Nominal torque ${ }^{1)}$	Type 540.1_-	M_{2}	[Nm]	10	20	45	80	160	320	640
Electrical power		P_{20}	[W]	18	19	28	38	46	61	82
Maximum speed		$\mathrm{n}_{\text {max }}$	[rpm]	8000	6000	5000	4200	3600	3000	2200
Weight	without accessories	m	[kg]	0.73	1.22	1.85	3.16	5.54	11.6	22.2
	with flange hub	m	[kg]	0.78	1.29	2.01	3.38	6.11	12.86	23.93
Mass moment of inertia	Rotor ${ }^{2)}$	$\mathrm{I}_{\text {eig }}$	[$10^{-4} \mathrm{kgm}^{2}$]	1.37	3.35	9.36	20.8	54.4	178	462
	Armature disk	$\mathrm{I}_{\text {eig }}$	[$10-4 \mathrm{kgm}^{2}$]	0.35	1.05	2.97	7.04	14	81	315
	Flange hub ${ }^{2)}$ + Armature disk	$\mathrm{I}_{\text {eig }}$	[$10^{-4} \mathrm{kgm}^{2}$]	0.5	1.5	4.5	10.9	37.1	107	381

1) Please observe run-in conditions or minimum speed (see page 4).

Standard voltages 24 VDC; 104 VDC.
2) With max. bore

Permitted voltage tolerances acc. IEC $38+/-10 \%$.

Bores			Size						
			3	4	5	6	7	8	9
Ød ${ }_{2}{ }^{\text {H7 }}$	Preferred bores	[mm]	10; 15	17; 20	20; 25; 30	20; 25; 30	25; 30; 40	40; 45; 50	40; 50; 60
	min.	[mm]	7	8	12	12	19	22	30
	max.	[mm]	$20^{3)}$	$25^{3)}$	30	40	50	60	65
Ød $\mathrm{d}^{\text {H7 }}$	Preferred bores	[mm]	10; 15	17; 20	20; 25	25; 30	30; 40	40; 50	50; 60
	min.	[mm]	8	9	13	15	20	24	27
	max.	[mm]	17	20	30	$35{ }^{4}$	45	60	80

3) With max. bore keyway to DIN 6885/3
4) Up to Ø 32 keyway acc. DIN 6885/1, over Ø 32 keyway acc. DIN 6885/3

Dimensions [mm]	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
\mathbf{a}	0.2	0.2	0.2	0.3	0.3	0.5	0.5
\mathbf{D}	64.5	81.5	99	118	151	193	251
$\mathbf{D}_{\mathbf{1}}$	70	87	106	125	157	200	251
$\mathbf{D}_{\mathbf{2}}$	55	70	88	110	140	185	242
\mathbf{G}	29.5	30.5	45.5	48	69	91	111
\mathbf{g}	27	29.5	44	47	66	84	104
\mathbf{K}	3×4.3	3×4.6	3×5.8	3×7	3×9.4	3×11.5	4×20
\mathbf{k}	1.6	1.7	2.3	2.7	2.8	2.0	4.2
\mathbf{L}	28	31	35.9	40.5	46.5	55.4	63.9
$\mathbf{\mathbf { L } _ { \mathbf { 2 } }}$	15	20	25	29.5	38	45.3	53.9
$\mathbf{I}_{\mathbf{2}}$	11.5	16	20	23.5	31	36.3	42.9
$\mathbf{I}_{\mathbf{6}}$	40	43.5	49	55	61.5	74	81
\mathbf{M}	46	60	76	95	120	158	210
$\mathbf{n}_{\mathbf{1}}$	9	9	10	10.5	12	13	15.5

Dimensions [mm]	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	
$\mathbf{0}$	59	68	79.9	91.5	108.5	130.4	147.8	
$\mathbf{O}_{\mathbf{1}}$	44	48	54.9	62.0	70.5	85.1	93.9	
\mathbf{P}	70	79.7	98.2	115.4	150.4	189.4	235.8	
\mathbf{p}	64	72	85	105	120	145	150	
$\mathbf{s}_{\mathbf{1}}$	$3 \times \mathrm{M} 3$	$3 \times \mathrm{M} 4$	$3 \times \mathrm{M} 5$	$3 \times \mathrm{M} 6$	$3 \times \mathrm{M} 8$	$3 \times \mathrm{M} 10$	$3 \times \mathrm{M} 12$	
\mathbf{t}	3.8	4.3	5.7	6.7	8.7	10.6	12.4	
$\mathbf{\mathbf { t } _ { \mathbf { 1 } }}$	4.1	5.0	6.9	6.7	8.2	8.5	11.8	
\mathbf{U}	6	8	8	10	12	14	14	
\mathbf{u}	2	2.5	2.5	2.5	3	4.5	6	
Permitted shaft mis- alignment	\mathbf{V}	0.05	0.05	0.05	0.05	0.1	0.1	0.1
\mathbf{W}	5	5	6	10	10	15	20	
\mathbf{Y}	$\left[{ }^{\circ}\right]$	45	45	30	30	30	30	30
\mathbf{Y}	$\left[{ }^{\circ}\right]$	30	30	22.5	22.5	15	15	15

We reserve the right to make dimensional and constructional alterations.

ROBATIC ${ }^{\circledR}$-electromagnetic clutch

With bearing-supported flange ${ }^{1)}$ Sizes 3-9
Type 540.14_

Type 540.140
With bearing-supported flange

Order number

Example: 5 / 540.140 / 24 / 24 / 6885/1 / AS
your reliable partner
With bearing-supported flange ${ }^{1)}$ Sizes 3-9
Type 540.14_

Technical data				Size						
				3	4	5	6	7)	8)	9)
Nominal torque ${ }^{2)}$	Type 540.14_	M_{2}	[Nm]	10	20	45	80	160	320	640
Electrical power		P_{20}	[W]	18	19	28	38	46	61	82
Maximum speed		$\mathrm{n}_{\text {max }}$	[rpm]	8000	6000	5000	4200	3600	3000	2200
Weight	with max. bore	m	[kg]	1.2	1.85	2.95	4.7	8.25	16.6	29.2
Mass moment of inertia	Rotor (max. bore)	$\mathrm{I}_{\text {eig }}$	[$10^{-4} \mathrm{kgm}^{2}$]	1.59	3.82	10.24	23.22	52.05	197.66	497
	Armature disk + driver flange	$\mathrm{I}_{\text {eig }}$	[$10^{-4} \mathrm{kgm}^{2}$]	1.97	4.06	9.95	22.93	50.53	147.83	533.7

1) 2-shaft connection on request
2) Please observe run-in conditions or minimum speed (see page 4),
*) From Size 7 on, the installation of a key in the driver flange is necessary in order to ensure torque transmission.

Bores			Size						
			3	4	5	6	7	8	9
Ød ${ }_{4}$	maximum	[mm]	15	$19^{3)}$	24	33	46	58	65
Ød ${ }_{3}$		[mm]	16	20	26	$\begin{aligned} & 26^{4)} \\ & 37^{5)} \end{aligned}$	$\begin{gathered} 37^{6)} \\ 47^{77} \\ 8 \text { 8) } \end{gathered}$	$\begin{aligned} & 37^{6)} \\ & 47^{77} \\ & 59^{8)} \end{aligned}$	$\begin{aligned} & 47^{9)} \\ & 67^{8)} \\ & \quad \quad 10) \end{aligned}$

3) Above $\varnothing 18$ keyway to DIN $6885 / 3$ with $d_{4 \text { max }}$ - depth of hub keyway $1.2^{+0.1}$
4) above $\varnothing d_{4}$ to 19
5) above $Ø d_{4}$ over 19
6) above $\varnothing d_{4}$ to 28

Dimensions [mm]	Size						
	3	4	5	6	7	8	9
a	0.2	0.2	0.2	0.3	0.3	0.5	0.5
D_{1}	70	87	106	125	157	200	251
\mathbf{D}_{3}	71	82	102	122	156	199	250
G	29.5	30.5	45.5	48	69	91	111
$\mathbf{e n}_{\mathrm{n} 6}$	56	64	75	90	110	135	160
L	28	31	35.9	40.5	46.5	55.4	63.9
L_{7}	25.8	29.7	38.7	43.5	48.9	53.9	57.1
I_{3}	35	$\begin{aligned} & 45^{11)} \\ & 35^{12)} \end{aligned}$	$\begin{aligned} & 50^{4)} \\ & 40^{5)} \end{aligned}$	$\begin{aligned} & 60^{4)} \\ & 40^{5)} \\ & 20^{7)} \end{aligned}$	$\begin{gathered} 55^{6)} \\ 35^{77} \\ -^{8)} \end{gathered}$	$\begin{aligned} & 75^{6)} \\ & 55^{7)} \\ & 25^{8)} \end{aligned}$	$\begin{aligned} & 70^{9)} \\ & 40^{87} \\ & -^{10} \\ & \hline \end{aligned}$
I_{8}	21.5	24	30	34	39	44	46
M_{3}	66	75	94	112	145	184	235
n_{1}	9	9	10	10.5	12	13	15.5
n_{3}	16	17	19	21.5	24	30	30

11) above $\varnothing d_{4}$ bis 14
12) above $\varnothing d_{4}$ über 14
13) From Size 7 on, the installation of a key in the driver flange is necessary in order to ensure torque transmission.
14) above $\varnothing d_{4}$ over 28
15) above $\varnothing d_{4}$ over 38
16) above $\oslash d_{4}$ to 38
17) above $\oslash d_{4}$ über 55

Dimensions [mm]		Size						
		3	4	5	6	7	8	9
O_{5}		70	78	94	106	120	140	152
P		70	79.7	98.2	115.4	150.4	189.4	235.8
p		64	72	85	105	120	145	150
\mathbf{S}_{2}		$\begin{aligned} & 3 x \\ & \mathrm{M} 4 \end{aligned}$	$\begin{aligned} & 3 x \\ & \text { M5 } \end{aligned}$	$\begin{aligned} & 3 x \\ & \text { M5 } \end{aligned}$	$\begin{aligned} & 3 x \\ & \text { M6 } \end{aligned}$	$\begin{aligned} & 3 x \\ & \text { M6 } \end{aligned}$	$\begin{aligned} & 3 x \\ & \text { M8 } \end{aligned}$	$\begin{aligned} & 3 \mathrm{x} \\ & \mathrm{M} 8 \end{aligned}$
U		6	8	8	10	12	14	14
u		2	2.5	2.5	2.5	3	4.5	6
W_{1}		17.5	19	24.5	28	31	36	38
Key X ${ }^{\text {13) }}$		$\begin{array}{r} 6 x 6 \\ \times 16 \end{array}$	$\begin{array}{r} 6 \times 6 \\ \times 18 \end{array}$	$\begin{array}{r} 8 \times 7 \\ \times 22 \end{array}$	$\begin{gathered} 10 \times 8 \\ \text { x25 } \end{gathered}$	$\begin{gathered} 10 \times 8 \\ \times 28 \end{gathered}$	$\begin{gathered} 14 \times 9 \\ x 32 \end{gathered}$	$\begin{gathered} 16 \times 10 \\ \times 36 \end{gathered}$
\mathbf{x}		3.5	3.5	4	5	5	5.5	6
Y_{1}	[${ }^{\circ}$]	75	75	52.5	52.5	45	45	45
Y_{2}	[${ }^{\circ}$]	90	90	90	90	90	90	135

We reserve the right to make dimensional and
constructional alterations.
your reliable partner
Technical explanations

Installation guidelines

ROBATIC ${ }^{\circledR}$-electromagnetic clutch

Fig. 1

	Size							
	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	
\mathbf{a}	$0.2_{-0.05}^{+0.1}$	$0.2_{-0.05}^{+0.15}$	$0.2_{-0.05}^{+0.15}$	$0.3_{-0.05}^{+0.15}$	$0.3_{-0.05}^{+0.15}$	$0.5_{-0.1}^{+0.15}$	$0.5_{-0.1}^{+0.15}$	
\mathbf{e}	0.25	0.3	0.2	0.35	0.5	0.55	0.6	

Fig. 2

Size							
	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
\mathbf{V}	0.05	0.05	0.05	0.05	0.1	0.1	0.1

Table 2 Permitted shaft misalignments

Table 1 Adjustment of the air gaps

The dimension "a" (Fig. 1) must be adjusted according to Table 1. Please ensure that the shaft is fastened axially, since otherwise the dimension "a" will change and cause the armature disk to band against coil carrier.
The air gap "e" is selected so that a brushing of the rotor against the coil carrier is not possible when keeping to the permitted centre offsets V and V1 (see Table "Dimensions").

Design:

ROBATIC ${ }^{\circledR}$-electromagnetic clutches are manufactured according to the electric protection IP 54 specification and the class of insulation F up to $155{ }^{\circ} \mathrm{C}$ for coil, casting compound, connection strands and the magnetic coil plastic-coated. The friction linings are asbestos-free, the surfaces of coil carrier, rotor and flange hub are phosphated. The armature disk is gas nitro-carburized and the transmission spring is made of stainless steel. The drive elements should be made from a material which is a poor magnetic conductor in order to prevent magnetic loss due to leakage flux and therefore loss of force.

ROBATIC ${ }^{\circledR}$-electromagnetic clutches are used for dry running. The torque is transmitted via the connection of the armature disk on the iron poles and the friction lining of the rotor (except the double-flow ROBATIC ${ }^{\circledR}$ clutch without friction lining, Type 500.30_.0).
When coupling two shafts, the eccentricity " V " of the shafts according to Table 2 must not be exceeded. The larger the displacement "V" the more the torque decreases and the hotter the friction surface becomes. In the case of this arrangement care must be taken that both shafts have no axial backlash since, otherwise, a brushing of the rotor would also be possible. The flange hub is kept axially by means of a set screw (on set 90° to the key). The " V "-values are indicated again in the Technical Data of the individual clutches.

Please observe in particular the following:

The run-in conditions or the minimum speed must be observed (see page 4).

The friction surfaces have to be absolutely free of oil and grease as otherwise, the torque drops significantly. The air gap "a" (Fig. 1) has to be checked periodically. The clutch does not function correctly, if the max. working air gap is exceeded (see Table 4, page 25).

Installation and maintenance must be carried out by trained and qualified specialists.
your reliable partner

Clutch size calculation

Formulas

1. Drive torque
$M_{A}=\frac{9550 \times P_{A}}{n}$

2. Required torque

$M_{\text {erf. }} \geq K \times M_{A}$
3. Switchable torque of the clutch (acc. to diagram 1, page 24)
$M_{s} \geq M_{\text {erf }}$.

4. Mass moment of inertia

$1=I_{\text {eig. }}+I_{\text {zus. }}$
5. Acceleration torque of the clutch
$M_{a}=M_{s} \stackrel{(+)}{-} M_{L}$
6. Acceleration time
$t_{a}=\frac{1 \times n}{9.55 \times M_{a}}+t_{1}$
7. Max. switching frequency per hour (dependent on time)
$S_{h \text { max }}=\frac{1}{t_{v M}+\left(t_{a}+t_{2}\right) \times 1.2} \times 3600$
[h^{-1}]
8. Friction work per acceleration
$Q_{a}=\frac{1 \times n^{2}}{182.4} \times \frac{M_{s}}{M_{a}}$
9. Examination of the selected clutch size in diagram 2 (page 24 friction power diagram).
Intersection friction work / switching frequency must be below the friction power curve! If it is above, the next size has to be selected and re-calculated from point 3 on.

$$
\begin{equation*}
Q_{a}<Q_{E} \tag{J}
\end{equation*}
$$

10. Number of switchings until re-adjustment
$Z_{n}=\frac{Q_{1}}{Q_{a}} \times\left(a_{n}-a\right)$
11. Number of switchings until wear limit
$Z=\frac{Q_{\text {ges. }}}{Q_{a}}$

Key:

P_{A}	$[\mathrm{~kW}]$	input power		
M_{A}	$[\mathrm{Nm}]$	drive torque		
M_{a}	$[\mathrm{Nm}]$	acceleration torque of the clutch		
$M_{\text {erf. }}$	$[\mathrm{Nm}]$	required torque		
M_{L}	$[\mathrm{Nm}]$	load torque (+ = lower load) $(-=$ lift load)		
M_{s}	$[\mathrm{Nm}]$	switchable torque of the clutch (diagram 1, page 24)		
		$[\mathrm{rpm}]$	input speed \quad	safety factor ≥ 2
:---	:---	:---		

your reliable partner

Calculation example

Data:

Input power
$\mathrm{P}_{\mathrm{A}}=3 \mathrm{~kW}$
Input speed
Load torque output
Additional mass moment of inertia
Braking time of the machine

180 switchings per hour

Drive torque
$M_{A}=\frac{9550 \times P_{A}}{n}=\frac{9550 \times 3}{1400}=\mathbf{2 0 . 5}[\mathrm{Nm}]$

Required torque

$M_{\text {erf. }}=K \times M_{A}=2 \times 20.5=41[\mathrm{Nm}]$
Determined clutch size (acc. to diagram 1) = Size 6
$M_{s} \geq M_{\text {erf. }} \quad=47[\mathrm{Nm}]$
Selected clutch $=$ Size 6, Type 500.200.0

Mass moment of inertia

$I=I_{\text {eig. }}+I_{\text {zus. }}=0.001756+0.15=0.151756\left[\mathrm{kgm}^{2}\right]$

Acceleration torque of the clutch

$M_{a}=M_{s}-M_{L}=47-15=32[\mathrm{Nm}]$

Acceleration time of the clutch

$\mathrm{t}_{\mathrm{a}}=\frac{\mathrm{I} \times \mathrm{n}}{9.55 \times \mathrm{M}_{\mathrm{a}}}+\mathrm{t}_{1}{ }^{*}=\frac{0.151756 \times 1400}{9.55 \times 32}+0.15=0.845[\mathrm{sec}]$

* Switching times t_{1} und t_{2} from Table 3, page $25=$ without overexcitation

Max. switching frequency per hour
$S_{h \text { max }}=\frac{1}{t_{v M}+\left(t_{a}+t_{2}^{*}\right) \times 1.2} \times 3600$
$\mathrm{S}_{\mathrm{h} \max }=\frac{1}{1.5+(0.845+0.060) \times 1.2} \times 3600=1392\left[\mathrm{~h}^{-1}\right]$
Friction work per acceleration
$Q_{a}=\frac{1 \times n^{2}}{182.4} \times \frac{M_{s}}{M_{a}}$
$Q_{a}=\frac{0.151756 \times 1400^{2}}{182.4} \times \frac{47}{32}=2395[J] \leq Q_{E}$
The point of intersection determined in diagram 2 must be located in or under the characteristic curve of the selected clutch.
Switching frequency: 180 switchings per hour = permitted

Number of switchings until re-adjustment

$Z_{n}=\frac{Q_{1}}{Q_{a}} \times\left(a_{n}-a\right)$
$Z_{n}=\frac{57 \times 10^{7}}{2395} \times(1.2-0.3)=214196$ switchings

Number of switchings until wear limit

Diagram 1 (not valid for Type 500.30_) ** Friction surfaces have been run in

Friction power diagram

 valid for speed = 1500 rpm

Diagram 2 (not valid for Type 500.30_)
your reliable partner

Switching times

The switching times stated in Table 3 have been determined by comprehensive series of tests. They are valid for switching DC-side with nominal air gap and warm coil. Deviations depend on the respective installation situation, ambient temperatures, release path and the type of rectification with which the corresponding clutch is operated.

Switching times				Size						
				3	4	5	6	7	8	9
without overexcitation	Type 500._----	t_{11}	[sec]	0.010	0.015	0.020	0.030	0.045	0.050	0.060
		t_{1}	[sec]	0.045	0.065	0.080	0.150	0.200	0.350	0.400
		t_{2}	[sec]	0.012	0.020	0.045	0.060	0.090	0.095	0.130
with overexcitation	Type 500._ - -.-	t_{11}	[sec]	0.003	0.005	0.007	0.010	0.015	0.020	0.035
		t_{1}	[sec]	0.025	0.035	0.040	0.075	0.100	0.170	0.235
without overexcitation	Type 540._- ---	t_{11}	[sec]	0.010	0.012	0.012	0.020	0.025	0.050	0.060
		t_{1}	[sec]	0.050	0.072	0.112	0.160	0.200	0.350	0.460
		t_{2}	[sec]	0.014	0.020	0.030	0.050	0.075	0.095	0.130
with overexcitation	Type 540._----	t_{11}	[sec]	0.004	0.005	0.006	0.010	0.013	0.020	0.035
		t_{1}	[sec]	0.024	0.035	0.056	0.080	0.100	0.170	0.235
without overexcitation	Type 500.3_-*-	t_{11}	[sec]	0.017	0.026	0.035	0.052	0.079	-	-
		t_{1}	[sec]	0.079	0.113	0.140	0.262	0.350	-	-
		t_{2}	[sec]	0.010	0.016	0.036	0.048	0.072	-	-
with overexcitation	Type 500.3_ _--	t_{11}	[sec]	0.005	0.009	0.012	0.017	0.026	-	-
		t_{1}	[sec]	0.044	0.061	0.070	0.131	0.175	-	-

Table 3

Key:

$M_{2}=$ Nominal torque of the clutch
$M_{L}^{2}=$ Load torque of the drive
$\mathrm{P}=$ Electrical power
$t_{a}=$ Acceleration time
$\mathrm{t}_{1}=$ Connection time
$t_{11}=$ Response delay on connection
$\mathrm{t}_{2}=$ Separation time
$\mathrm{t}_{3}=$ Slip time

Diagram 3:Torque-Time Diagram

Friction work ${ }^{\text {1) }}$ and air gap			Size						
			3	4	5	6	7	8	9
Friction work up Type 500._ _ _._	Q_{1}	[$10^{7} \mathrm{~J} / \mathrm{mm}$]	12.5	20	33	57	100	105	170
to 1 mm wear Type 540._ _ _-	Q_{1}	[$10^{7} \mathrm{~J} / \mathrm{mm}$]	8.8	13.4	24	36	60	105	170
Total friction work Type 500._ _ - -	$Q_{\text {ges }}$	[107 ${ }^{7}$]	12.5	25	50	100	200	185	340
tal friction work ${ }^{\text {Type 540._ _ _._ }}$	$\mathrm{Q}_{\text {ges }}$	[107 J]	8	16	35	68	135	185	340
Permitted friction work with a single switching	Q_{E}	$\left[10^{3} \mathrm{~J}\right]$	3.8	6.2	9	15	25	42	65
Nominal air gap	a	[mm]	0.2	0.2	0.2	0.3	0.3	0.5	0.5
Max. working air gap	a_{n}	[mm]	0.6	0.8	1.0	1.2	1.5	1.8	2.0

Table 4

1) The friction work data are not valid for Type 500.30_. 0 double-flow design.

Please Observe!

Due to operating parameters such as sliding speed, pressing or temperature the wear values can only be considered guideline values.

Half-wave and bridge rectifiers Type 02_.000.6

Application

Rectifiers are used to connect DC consumers to alternating voltage supplies, for example electromagnetic brakes and clutches (ROBA-stop ${ }^{\oplus}$, ROBA-quick ${ }^{\oplus}$, ROBATIC ${ }^{\ominus}$), electromagnets, electrovalves, contactors, switch-on safe DC motors, etc.

Function

The AC input voltage (VAC) is rectified (VDC) in order to operate DC voltage units. Also, voltage peaks, which occur when switching off inductive loads and which may cause damage to insulation and contacts, are limited and the contact load reduced.

Electrical connection (Terminals)

$1+2$ Input voltage
$3+4$ Connection for an external switch for DC-side switching
$5+6$ Coil
7-10 Free nc terminals (only for Size 2)

Order number

Dimensions (mm)

Accessories: Mounting bracket set for 35 mm rail acc. EN 60715: Article No. 1803201.

Technical data					Bridge rectifier		Half-wave rectifier			
Calculation output voltage					VDC = VAC $\times 0.9$		VDC = VAC $\times 0.45$			
Type					1/025	2/025	1/024	2/024	3/024	4/024
Max. input voltage		$\pm 10 \%$	$U_{\text {AC }}$	[VAC]	230	230	400	400	500	600
Max. output voltage			$U_{\text {DC }}$	[VDC]	207	207	180	180	225	270
Output current		$\leq 50^{\circ} \mathrm{C}$	$\mathrm{I}_{\text {RMS }}$	[A]	2.5	2.5	3.0	4.0	4.0	4.0
		at max. $85{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\text {RMS }}$	[A]	1.7	1.7	1.8	2.4	2.4	2.4
Max. coil nominal capacity at	$U_{\text {AC }}=115 \mathrm{VAC}$	$\leq 50^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {nenn }}$	[W]	260	260	-	-	-	-
		up to $85^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {nenn }}$	[W]	177	177	-	-	-	-
	$\mathrm{U}_{\mathrm{AC}}=230 \mathrm{VAC}$	$\leq 50^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {nenn }}$	[W]	517	517	312	416	416	416
		up to $85^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {nemn }}$	[W]	352	352	187	250	250	250
	$U_{A C}=400 \mathrm{VAC}$	$\leq 50^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {nenn }}$	[W]	-	-	540	720	720	720
		up to $85^{\circ} \mathrm{C}$	$P_{\text {neenn }}$	[W]	-	-	324	432	432	432
	$U_{A C}=500 \mathrm{VAC}$	$\leq 50^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {nenn }}$	[W]	-	-	-	-	900	900
		up to $85^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {neenn }}$	[W]	-	-	-	-	540	540
	$U_{A C}=600 \mathrm{VAC}$	$\leq 50^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {nenn }}$	[W]	-	-	-	-	-	1080
		up to $85^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {nenn }}$	[W]	-	-	-	-	-	648
Peak reverse voltage				[$\mathrm{]}$]	1600	1600	2000	1600	2000	2000
Rated insulation voltage			$U_{\text {RMS }}$	[$\mathrm{V}_{\text {RMS }}$]	320	320	500	500	630	630
Pollution degree (insulation coordination)					11		1	1	1	1
Device fuses					To be included in the input voltage line.					
Recommended microfuse switching capacity H The microfuse corresponds to the max. possible connection capacity. If fuses are used corresponding to the actual capacities, the permitted limit integral l^{2} t must be observed on selection.					FF 3.15 A	FF 3.15 A	FF 4 A	FF 5 A	FF 5 A	FF 5 A
Permitted limit integral			$1^{12} t$	[${ }^{2}$ S] $]$	40	40	50	100	50	50
Protection					IP65 components, encapsulated / IP20 terminals					
Terminals					Cross-section 0.14-1.5 mm ${ }^{2}$ (AWG 26-14)					
Ambient temperature				[${ }^{\text {C }}$]	-25 to +85					
Storage temperature				[${ }^{\text {C }}$]	-40 to +85					
Conformity markings					UL, CE	CE				
Installation conditions					The installation position can be user-defined. Please ensure sufficient heat dissipation and air convection! Do not install near to sources of intense heat!					

Spark quenching unit Type 070.000.6

Application

Reduces spark production on the switching contacts occurring during DC-side switch-off of inductive loads.

- Voltage limitation according to VDE 0580 2000-07, Item 4.6.
- Reduction of EMC-disturbance by voltage rise limitation, suppression of switching sparks.
- Reduction of brake engagement times by a factor of 2-4 compared to free-wheeling diodes.

Function

The spark quenching unit will absorb voltage peaks resulting from inductive load switching, which can cause damage to insulation and contacts. It limits these to 70 V and reduces the contact load. Switching products with a contact opening distance of $>3 \mathrm{~mm}$ are suitable for this purpose.

Electrical connection (Terminals)

1 (+) Input voltage
$2(-) \quad$ Input voltage
3 (-) Coil
4 (+) Coil
5 Free nc terminal
6 Free nc terminal

Technical data

Input voltage

Switch-off energy
Power dissipation
Rated voltage
nc terminals
Protection
Ambient temperature
Storage temperature
max. 300 VDC , max. $615 \mathrm{~V}_{\text {pea }}$ (rectified voltage 400 VAC, 50 / 60 Hz)
max. $9 \mathrm{~J} / 2 \mathrm{~ms}$
max. 0.1 Watt
250 V
IP65 / IP20 terminals
$-25^{\circ} \mathrm{C}$ up to $+85^{\circ} \mathrm{C}$
$-25^{\circ} \mathrm{C}$ up to $+105^{\circ} \mathrm{C}$
Max. conductor cross-section $2.5 \mathrm{~mm}^{2}$ / AWG 26-12
Max. terminal tightening torque 0.5 Nm

Accessories

Mounting bracket set for 35 mm mounting rail acc. EN 60715: Article No. 1803201

Dimensions (mm)

Order number

\(\underset{\substack{size

1}}{ } \quad /\)| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

ROBA $^{\oplus}$-quick electromagnetic brake

Exact positioning over the entire service lifetime

- High torque security

due to an optimised magnetic circuit and new design of the ROBA $^{\oplus}$-quick. Therefore higher capacities due to less magnetic leakage flux.
\square Exact positioning until wear limit ideal for positioning operations
\square Large internal diameters of the magnetic coil bodies
Therefore large permitted shaft diameters and few magnetic field losses

Low-noise

- Short switching times/high switching frequencies

Functional principle

ROBA ${ }^{\circledR}$-quick are 'energise to engage', electromagnetic pole face brakes.
When DC voltage is applied to the magnetic coil (1), a magnetic field is built up. The armature disk (3) is attracted to the brake coil carrier with friction lining (4). The braking torque runs from the coil carrier (2) via friction lining (4), armature disk (3) and membrane transmission spring (5) to the flange (6) and the shaft.

If the magnetic coil is de-energised, the membrane transmission spring (5) draws the armature disk (3) back to the flange (6). The brake is released and the shaft (7) can run freely.

your reliable partner

Summary of constructional designs ROBA $^{\circledR}$-quick

ROBA $^{\circledR}$-quick standard

Sizes 3 to 7	without accessories	Type	520.200 .0
Type $520.20 _.0$	with flange hub	Type	520.201 .0
	with internal hub	Type	520.202 .0

ROBA $^{\oplus}$-quick standard

Sizes 8 to 9
 Type 520.1_0

without accessories	Type	520.100
with flange hub	Type	520.110
with internal hub	Type	520.120

Pages 32-33
ROBA ${ }^{\circledR}$-quick
small mounting diameter

Sizes 3 to 7
Type 520.21_. 0

without accessories	Type	520.210 .0
with flange hub	Type	520.211 .0
with internal hub	Type	520.212 .0

ROBA ${ }^{\circledR}$-quick electromagnetic brake

Standard
Sizes 3-7
Type 520.20_. 0

Type 520.201.0 Standard with flange hub

Type 520.202.0
Standard with internal hub

Order number

your reliable partner
Standard
Sizes 3-7
Type 520.20_. 0

Technical data				Size				
				3	4	5	6	7
Nominal torque ${ }^{1)}$	Type 520.20_. 0	M_{2}	[Nm]	8.5	17	45	80	160
Electrical power		P_{20}	[W]	13	20	31	47	71
Maximum speed		$\mathrm{n}_{\text {max }}$	[rpm]	8600	7000	6100	5800	4500
Weight	without accessories	m	[kg]	0.38	0.55	1.25	1.88	3.5
	with flange hub	m	[kg]	0.42	0.86	1.40	2.35	7.5
Mass moment of inertia	Armature disk	$\mathrm{l}_{\text {eig }}$	[$10^{-4} \mathrm{kgm}^{2}$]	0.76	1.92	6.86	17.56	52.86
	Flange hub ${ }^{2)}$ + Armature disk	$\mathrm{I}_{\text {eig }}$	$\left[10^{-4} \mathrm{kgm}^{2}\right]$	1.02	2.75	8.63	24.66	70.63

1) Please observe run-in conditions or minimum speed (see page 4).

Standard voltages 24 VDC; 104 VDC.
2) With max. bore

Bores			Size				
			3	4	5	6	7
Ød $\mathrm{d}^{\text {H7 }}$	Preferred bores	[mm]	17; 20	20; 25	25; 30	30; 40	40; 50
	min.	[mm]	9	13	15	20	23
	max.	[mm]	20	30	$35^{3)}$	45	60

3) Up to $\varnothing 32$ keyway acc. DIN 6885/1, over Ø 32 keyway acc. DIN 6885/3

Dimensions [mm]	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
\mathbf{a}	0.2	0.2	0.2	0.3	0.3
\mathbf{b}	4.5	4	5.5	5.5	7.5
\mathbf{D}	73.5	92	115	140	177
$\mathbf{D}_{\mathbf{2}}$	70	88	110	140	170
\mathbf{G}	36	49	57.5	74	95
\mathbf{g}	29.5	44	47	66	84
$\mathbf{H}_{\mathbf{h} 9}$	80	100	125	150	190
\mathbf{K}	3×4.5	3×5.5	3×6.6	3×8.7	3×8.8
\mathbf{k}	1.7	2.3	2.7	2.8	2.7
$\mathbf{L}_{\mathbf{1}}$	22.1	24.7	28.1	31.4	34.7
$\mathbf{L}_{\mathbf{2}}$	20	22	28	32	36
$\mathbf{I}_{\mathbf{1}}$	3.5	4.3	5.2	6	7
$\mathbf{I}_{\mathbf{2}}$	16	17	22	25	27
\mathbf{M}	60	76	95	120	150

Dimensions [mm]	Size					
$\mathbf{M}_{\mathbf{1}}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	
$\mathbf{n}_{\mathbf{2}}$	2.6	3.2	1.1	0.3	1.7	
$\mathbf{O}_{\mathbf{1}}$	42.1	46.7	56.1	63.4	70.7	
$\mathbf{O}_{\mathbf{2}}$	26.1	29.7	34.1	38.3	43.7	
\mathbf{s}	4×4.8	4×5.7	4×6.8	4×6.8	4×9.2	
$\mathbf{s}_{\mathbf{1}}$	$3 \times \mathrm{M} 4$	$3 \times \mathrm{M} 5$	$3 \times \mathrm{M} 6$	$3 \times \mathrm{M} 8$	$3 \times \mathrm{M} 8$	
\mathbf{t}	3.9	4.5	5.8	7.1	8.3	
$\mathbf{t}_{\mathbf{1}}$	5.2	7.2	8.7	8.0	9.7	
Permitted shaft misa-	\mathbf{V}	0.05	0.05	0.05	0.05	
lignm. $\mathbf{a n d}$ centre offset	$\mathbf{V}_{\mathbf{1}}$	0.1	0.15	0.15	0.15	
\mathbf{W}	5	5	6	8	0.2	
$\mathbf{Z} \mathbf{H 8}$	42	52	62	80	100	
\mathbf{z}	3.5	4.5	5	6	6	

We reserve the right to make dimensional and constructional alterations.

ROBA $^{\oplus}$-quick electromagnetic brake

Standard

Type 520.100
Standard

Type 520.110
Standard with flange hub

Type 520.120
Standard with internal hub

Order number

$\left.\begin{array}{ccccccccc} & 1 & 5 & 2 & 0 & 0 & 1 & - & 0\end{array}\right]$

[^1]your reliable partner
Standard
Sizes 8-9
Type 520.1_0

Technical data				Size	
				8	9
Nominal torque ${ }^{1)}$	Type 520.1 _0	M_{2}	[Nm]	320	640
Electrical power		P_{20}	[W]	40	77
Maximum speed		$\mathrm{n}_{\text {max }}$	[rpm]	3000	2200
Weight	without accessories	m	[kg]	5.64	6.90
	with flange hub	m	[kg]	13.9	15.63
Mass moment of inertia	Armature disk	$\mathrm{I}_{\text {eig }}$	[$10^{-4} \mathrm{kgm}^{2}$]	81	315
	Flange hub ${ }^{2)}$ + Armature disk	$\mathrm{I}_{\text {eig }}$	[$10^{-4} \mathrm{kgm}^{2}$]	107	381

1) Please observe run-in conditions or minimum speed (see page 4).

Standard voltages 24 VDC; 104 VDC.
2) With max. bore

Bores			Size	
			8	9
Ød $\mathrm{d}^{\text {H7 }}$	Preferred bores	[mm]	40; 50	50; 60
	min.	[mm]	24	27
	max.	[mm]	60	80

Dimensions	Size	
[mm]	$\mathbf{8}$	$\mathbf{9}$
\mathbf{a}	0.5	0.5
\mathbf{b}	16	16
\mathbf{D}	193	251
$\mathbf{D}_{\mathbf{2}}$	185	242
\mathbf{f}	92	112
\mathbf{G}	91	111
\mathbf{g}	84	104
$\mathbf{H}_{\mathbf{n} 9}$	230	290
\mathbf{K}	3×11.5	4×20
\mathbf{k}	2	4.2
$\mathbf{L}_{\mathbf{2}}$	45.3	53.9
$\mathbf{L}_{\mathbf{6}}$	40.1	47.9
$\mathbf{I}_{\mathbf{2}}$	36.3	42.9
$\mathbf{I}_{\mathbf{4}}$	5	6

Dimensions [mm]	Size	
$\mathbf{I}_{\mathbf{7}}$	$\mathbf{8}$	$\mathbf{9}$
\mathbf{M}	30	35
$\mathbf{M}_{\mathbf{1}}$	158	210
$\mathbf{n}_{\mathbf{2}}$	0.8	270
$\mathbf{O}_{\mathbf{2}}$	86.4	1.0
$\mathbf{O}_{\mathbf{3}}$	50.1	101.8
\mathbf{s}	4×9	58.9
$\mathbf{s}_{\mathbf{1}}$	$3 \times \mathrm{M} 10$	4×11
$\mathbf{t}_{\mathbf{1}}$	8.5	$4 \times \mathbf{M 1 2}$
Permitted shaft mis- alignm. and centre offset	\mathbf{v}	$\mathbf{\mathbf { v } _ { \mathbf { 1 } }}$
\mathbf{W}	0.1	11.8
$\mathbf{Z}^{\text {H8 }}$		

We reserve the right to make dimensional and
constructional alterations.
your reliable partner

ROBA ${ }^{\circledR}$-quick electromagnetic brake

Small mounting diameter
Sizes 3-7
Type 520.21_. 0

Type 520.210.0
Small mounting diameter

Type 520.211.0
Small mounting diameter and flange hub

Type 520.212.0 Small mounting diameter and internal hub

Order number

	/	5	2	0		2	1	-		0 /	-	/	-	/	-
\triangle								\triangle			\triangle		\triangle		\triangle
$\begin{gathered} \text { Size } \\ 3 \\ \text { to } \\ 7 \end{gathered}$						without ange h internal	ssories	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$		Coil voltage [VDC]	$\begin{gathered} 24 \\ 104 \end{gathered}$		$\begin{aligned} & \text { Hub * } \\ & \text { Hore } \\ & \varnothing \mathrm{d}_{1}{ }^{\text {H7 }} \end{aligned}$		Keyway * acc. DIN 6885/1 or DIN 6885/3

your reliable partner

Small mounting diameter

Sizes 3-7
Type 520.21_. 0

Technical data				Size				
				3	4	5	6	7
Nominal torque ${ }^{11}$	Type 520.21_. 0	M_{2}	[Nm]	8.5	17	45	80	160
Electrical power		P_{20}	[W]	13	20	31	47	71
Maximum speed		$\mathrm{n}_{\text {max }}$	[rpm]	8600	7000	6100	5800	4500
Weight	without accessories	m	[kg]	0.35	0.58	1.2	1.8	3.3
	with flange hub	m	[kg]	0.4	0.65	1.35	2	3.85
Mass moment of inertia	Armature disk	$\mathrm{l}_{\text {eig }}$	[$10^{-4} \mathrm{kgm}^{2}$]	0.7	1.79	6.28	15.77	48.1
	Flange hub ${ }^{2)}$ + Armature disk	$\mathrm{I}_{\text {eig }}$	[$10^{-4} \mathrm{kgm}^{2}$]	0.8	1.97	7.19	17.54	55.2

1) Please observe run-in conditions or minimum speed (see page 4).

Standard voltages 24 VDC; 104 VDC.
2) With max. bore

Permitted voltage tolerances acc. IEC 38 +/-10 \%.

Bores			Size				
			3	4	5	6	7
$\varnothing d_{1}{ }^{H 7}$	Preferred bores	[mm]	10; 15	17; 20	20; 25	25; 30	30; 40
	min.	[mm]	9	10	13	15	20
	max.	[mm]	17	20	30	$35^{3)}$	45

3) Up to Ø 32 keyway acc. DIN 6885/1, over Ø 32 keyway acc. DIN 6885/3

Dimensions [mm]	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
\mathbf{a}	0.2	0.2	0.2	0.3	0.3
\mathbf{b}	4.5	4	5.5	5.5	7.5
\mathbf{D}	73.5	92	115	140	177
$\mathbf{D}_{\mathbf{2}}$	55	70	88	110	140
\mathbf{G}	36	49	57.5	74	95
\mathbf{g}	27	29.5	44	47	66
$\mathbf{H}_{\mathbf{n} 9}$	80	100	125	150	190
\mathbf{K}	3×3.5	3×4.5	3×5.5	3×6.6	3×8.8
\mathbf{k}	1.6	1.7	2.3	2.7	2.8
$\mathbf{L}_{\mathbf{1}}$	22.1	24.6	28.1	30.9	34.4
$\mathbf{L}_{\mathbf{2}}$	15	20	22	28	32
$\mathbf{I}_{\mathbf{1}}$	3.5	4.3	5.2	6	7
$\mathbf{I}_{\mathbf{2}}$	11.5	16	17	22	25
\mathbf{M}	46	60	76	95	120

Dimensions [mm]	Size					
$\mathbf{M}_{\mathbf{1}}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	
$\mathbf{n}_{\mathbf{2}}$	8.5	90	112	137	175	
$\mathbf{O}_{\mathbf{1}}$	37.1	44.6	50.1	58.9	66.4	
$\mathbf{O}_{\mathbf{2}}$	25.6	28.6	33.1	36.9	41.4	
\mathbf{s}	4×4.8	4×5.7	4×6.8	4×6.8	4×9.2	
$\mathbf{s}_{\mathbf{1}}$	$3 \times \mathrm{M} 3$	$3 \times \mathrm{M} 4$	$3 \times \mathrm{M} 5$	$3 \times \mathrm{M} 6$	$3 \times \mathrm{M} 8$	
\mathbf{t}	3.9	4.4	5.9	6.6	8.1	
$\mathbf{t}_{\mathbf{1}}$	4.0	5.2	6.7	8.7	8.2	
Permitted shaft mis- alignm. $\mathbf{a n d}$ centre offset	\mathbf{V}	0.05	0.05	0.05	0.05	
$\mathbf{\mathbf { V } _ { \mathbf { 1 } }}$	0.1	0.15	0.15	0.15	0.1	
\mathbf{W}	5	5	6	8	8	
$\mathbf{Z}^{\text {H8 }}$	35	42	52	62	80	
\mathbf{z}	2	2.5	3	3.5	3.5	

We reserve the right to make dimensional and constructional alterations

Technical explanations
ROBA ${ }^{\oplus}$-quick electromagnetic brake

ROBA $^{\circledR}$-quick electromagnetic brakes are manufactured according to the electric protection IP 54 specification and the class of insulation F up to $155{ }^{\circ} \mathrm{C}$ for coil, casting compound, connection strands and the magnetic coil plastic-coated. The friction linings are asbestos-free, the surfaces of coil carrier and flange hub are phosphated. The armature disk is gas nitro-carburized and the transmission spring is made of stainless steel.

ROBA $^{\circledR}$-quick electromagnetic brakes are used for dry running. The torque is transmitted by friction between armature disk and the iron poles and the friction lining surfaces of the coil carrier.

Fig. 1

	Size						
	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
\mathbf{a}	$0.2_{-0.05}^{+0.1}$	$0.2_{-0.05}^{+0.15}$	$0.2_{-0.05}^{+0.15}$	$0.3_{-0.05}^{+0.15}$	$0.3_{-0.05}^{+0.15}$	$0.5_{-0.1}^{+0.15}$	$0.5_{-0.1}^{+0.15}$

Table 1 Adjustment of the air gaps

The dimension "a" (Fig. 1) must be adjusted according to Table 1. Please ensure that the shaft is fastened axially, since otherwise the dimension "a" will change and cause the rotor to band against the armature disk or the coil carrier.

Design:

Fig. 2

Please observe in particular the following:

The run-in conditions or the minimum speed must be observed (see page 4).
The friction surfaces have to be absolutely free of oil and grease as otherwise, the torque drops significantly. The air gap "a" (Fig. 1) has to be checked periodically. The brake does not function correctly if the max. working air gap (see Table 4, page 39) is exceeded.

Installation and maintenance must be carried out by trained and qualified specialists.
your reliable partner

Brake size calculation

Formulas

1. Drive torque
$M_{A}=\frac{9550 \times P_{A}}{n}$
[Nm]
2. Required torque
$M_{\text {eff. }} \geq K \times M_{A}$
3. Switchable torque of the clutch (acc. to diagram 1, page 38)
$M_{s} \geq M_{\text {erf. }}$

4. Mass moment of inertia

$1=I_{\text {eig. }}+I_{\text {zus }}$
5. Deceleration torque of the brake
$M_{v}=M_{s} \stackrel{(+)}{M_{L}}$
[Nm]
6. Deceleration time
$\mathrm{t}_{\mathrm{v}}=\frac{\mathrm{I} \times \mathrm{n}}{9.55 \times \mathrm{M}_{\mathrm{v}}}+\mathrm{t}_{1}$
[sec]
7. Max. switching frequency per hour (dependent on time)
$S_{n \text { max }}=\frac{1}{t_{a m}+\left(t_{v}+t_{2}\right) \times 1.2} \times 3600$
8. Friction work per deceleration
$Q_{v}=\frac{1 \times n^{2}}{182.4} \times \frac{M_{s}}{M_{v}}$
9. Examination of the selected brake size in diagram 2 (page 38 friction power diagram).
Intersection friction work / switching frequency must be below the friction power curve! If it is above, the next size has to be selected and re-calculated from point 3 on.
$Q_{v}<Q_{E}$
10. Number of switchings until re-adjustment
$Z_{n}=\frac{Q_{1}}{Q_{v}} \times\left(a_{n}-a\right)$
11. Number of switchings until wear limit
$Z=\frac{Q_{\text {ges. }}}{Q_{v}}$

Key:

$\mathrm{P}_{\text {A }}$	[kW]	input power	
$\mathrm{M}_{\text {A }}$	[Nm]	drive torque	
M_{v}	[Nm]	deceleration torque of the brake	
$\mathrm{M}_{\text {erf. }}$	[Nm]	required torque	
M_{L}	[Nm]	load torque (+ = lower load) (- = lift load)	
$\mathrm{M}_{\text {s }}$	[Nm]	switchable torque of the brake (diagram 1, page 38)	
n	[rpm]	input speed	
K		safety factor ≥ 2	
I	[kgm^{2}]	mass moment of inertia	
$\mathrm{I}_{\text {eig. }}$	[kgm^{2}]	own mass moment of inertia ("Technical data")	
$\mathrm{I}_{\text {zus. }}$	[kgm^{2}]	additional mass moment of inertia	
t	[sec]	deceleration time	
t_{am}	[sec]	acceleration time of the machine	
t_{1}	[sec]	switch-on time of the brake	Table 3,
t_{2}	[sec]	switch-off time of the brake	page 39
$S_{\text {h max }}$	$\left[\mathrm{h}^{-1}\right]$	max. switching frequency per hour (dependent on time)	
$Q_{\text {ges. }}$	[J]	total friction work (acc. Table 4, page 39)	
Q_{v}	[J]	friction work per deceleration	
Q_{E}	[J]	perm. friction work for single switching	Table
Q_{1}	[J / mm]	friction work until 1 mm wear	page 39
Z_{n}		number of switchings until re-adjustment	
Z		number of switchings until wear limit	
a	[mm]	nominal air gap	Table 4,
a_{n}	[mm]	max. working air gap	page 39

your reliable partner

Calculation example

Data:

Input power
Input speed
Load torque output
Additional mass moment of inertia
Acceleration time of the machine

$$
\begin{aligned}
\mathrm{P}_{\mathrm{A}} & =3 \mathrm{~kW} \\
\mathrm{n} & =1400 \mathrm{rpm} \\
\mathrm{M}_{\mathrm{L}} & =15 \mathrm{Nm} \\
\mathrm{I}_{\text {add. }} & =0.15 \mathrm{kgm}^{2}
\end{aligned}
$$

350 switchings per hour

Drive torque

$M_{A}=\frac{9550 \times P_{A}}{n}=\frac{9550 \times 3}{1400}=20.5[\mathrm{Nm}]$

Required torque

$M_{\text {erf. }}=K \times M_{A}=2 \times 20.5=41[\mathrm{Nm}]$
Determined brake size (acc. to diagram 1) = Size 6
$M_{s} \geq \quad M_{\text {erf. }} \quad=47[\mathrm{Nm}]$
selected brake $=$ Size 6, Type 520.200.0

Mass moment of inertia

$I=I_{\text {eig. }}+I_{\text {zus. }}=0.001756+0.15=0.151756\left[\mathrm{kgm}^{2}\right]$

Deceleration torque of the brake

$$
M_{v}=M_{s}+M_{L}=47+15=62[\mathrm{Nm}]
$$

Deceleration time of the brake

$\mathrm{t}_{\mathrm{v}}=\frac{\mathrm{Ixn}}{9.55 \times \mathrm{M}_{\mathrm{v}}}+\mathrm{t}_{1}{ }^{*}=\frac{0.151756 \times 1400}{9.55 \times 62}+0.10=0.46 \quad[\mathrm{sec}]$

* Switching times t_{1} und t_{2} from Table 3, page $39=$ without overexcitation

Max. switching frequency per hour
$S_{h \text { max }}=\frac{1}{t_{a M}+\left(t_{v}+t_{2}{ }^{*}\right) \times 1.2} \times 3600$
$S_{h \max }=\frac{1}{1.5+(0.46+0.060) \times 1.2} \times 3600=1695 \quad\left[h^{-1}\right]$

Friction work per deceleration
$Q_{v}=\frac{1 \times n^{2}}{182.4} \times \frac{M_{s}}{M_{v}}$
$Q_{v}=\frac{0.151756 \times 1400^{2}}{182.4} \times \frac{47}{62}=1236[J] \leq Q_{E}$
The point of intersection determined in diagram 2 must be located in or under the characteristic curve of the selected brake.

Switching frequency: 350 switchings per hour = permitted

Number of switchings until re-adjustment

$Z_{n}=\frac{Q_{1}}{Q_{v}} \times\left(a_{n}-a\right)$
$Z_{n}=\frac{57 \times 10^{7}}{1236} \times(1.2-0.3)=415048$ switchings

Number of switchings until wear limit

Diagram 1
** Friction surfaces have been run in

Friction power diagram

 valid for speed = 1500 rpm

Diagram 2
your reliable partner

Switching times

The switching times stated in Table 3 have been determined by comprehensive series of tests. They are valid for switching DC-side with nominal air gap and warm coil. Deviations depend on the respective installation situation, ambient temperatures, release path and the type of rectification with which the corresponding brake is operated.

Switching times				Size						
				3	4	5	6	7	8	9
without overexcitation	Type 520.__-	t_{11}	[sec]	0.006	0.008	0.010	0.015	0.025	0.027	0.030
		t_{1}	[sec]	0.035	0.040	0.055	0.100	0.150	0.245	0.330
		t_{2}	[sec]	0.010	0.018	0.030	0.060	0.090	0.100	0.140
with overexcitation	Type 520.__-	t_{11}	[sec]	0.002	0.003	0.004	0.006	0.008	0.010	0.015
		t_{1}	[sec]	0.020	0.022	0.030	0.050	0.075	0.120	0.165

Table 3

Please Observe!

The switching times "with overexcitation" are only valid for $10 \times$ nominal voltage (see table 3 , page 55).

Diagram 3:Torque-Time Diagram

Key:

$M_{2}=$ Nominal torque of the brake
$\mathrm{M}_{\mathrm{L}}=$ Load torque of the drive
P = Electrical power
$\mathrm{t}_{\mathrm{v}} \quad=$ Deceleration time
$\mathrm{t}_{1}=$ Connection time
$t_{11} \quad=$ Response delay on connection
$\mathrm{t}_{2}=$ Separation time
$\mathrm{t}_{3}=$ Slip time

Friction work and air gap			Size						
			3	4	5	6	7	8	9
Friction work up to 1 mm wear Type 520. \qquad	Q_{1}	[$10^{7} \mathrm{~J} / \mathrm{mm}$]	12.5	20	33	57	100	105	170
Total friction work Type 520.__-	$Q_{\text {ges }}$	[107 ${ }^{7}$]	12.5	25	50	100	200	185	340
Permitted friction work with a single switching	Q_{E}	[103 J]	3.8	6.2	9	15	25	42	65
Nominal air gap	a	[mm]	0.2	0.2	0.2	0.3	0.3	0.5	0.5
Max. working air gap	a_{n}	[mm]	0.6	0.8	1.0	1.2	1.5	1.8	2.0

Table 4

Please Observe!

Due to operating parameters such as sliding speed, pressing or temperature the wear values can only be considered guideline values.

Half-wave and bridge rectifiers Type 02_.000.6

Application

Rectifiers are used to connect DC consumers to alternating voltage supplies, for example electromagnetic brakes and clutches (ROBA-stop ${ }^{\oplus}$, ROBA-quick ${ }^{\oplus}$, ROBATIC ${ }^{\ominus}$), electromagnets, electrovalves, contactors, switch-on safe DC motors, etc.

Function

The AC input voltage (VAC) is rectified (VDC) in order to operate DC voltage units. Also, voltage peaks, which occur when switching off inductive loads and which may cause damage to insulation and contacts, are limited and the contact load reduced.

Electrical connection (Terminals)

$1+2$ Input voltage
$3+4$ Connection for an external switch for DC-side switching
$5+6$ Coil
7-10 Free nc terminals (only for Size 2)

Order number

Dimensions (mm)

Accessories: Mounting bracket set for 35 mm rail acc.
EN 60715: Article-No 1803201.

Technical data					Bridge rectifier		Half-wave rectifier			
Calculation output voltage					VDC = VAC $\times 0.9$		VDC = VAC $\times 0.45$			
Type					1/025	2/025	1/024	2/024	3/024	4/024
Max. input voltage		$\pm 10 \%$	$U_{\text {AC }}$	[VAC]	230	230	400	400	500	600
Max. output voltage			$U_{\text {DC }}$	[VDC]	207	207	180	180	225	270
Output current		$\leq 50^{\circ} \mathrm{C}$	$\mathrm{I}_{\text {RMS }}$	[A]	2.5	2.5	3.0	4.0	4.0	4.0
		at max. $85{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\text {gMs }}$	[A]	1.7	1.7	1.8	2.4	2.4	2.4
Max. coil nominal capacity at	$\mathrm{U}_{\mathrm{AC}}=115 \mathrm{VAC}$	$\leq 50^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {nenn }}$	[W]	260	260	-	-	-	-
		up to $85^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {nenn }}$	[W]	177	177	-	-	-	-
	$\mathrm{U}_{\mathrm{AC}}=230 \mathrm{VAC}$	$\leq 50^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {nenn }}$	[W]	517	517	312	416	416	416
		up to $85^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {nenn }}$	[W]	352	352	187	250	250	250
	$\mathrm{U}_{\mathrm{AC}}=400 \mathrm{VAC}$	$\leq 50^{\circ} \mathrm{C}$	$P_{\text {nenn }}$	[W]	-	-	540	720	720	720
		up to $85^{\circ} \mathrm{C}$	$P_{\text {nenn }}$	[W]	-	-	324	432	432	432
	$U_{A C}=500 \mathrm{VAC}$	$\leq 50^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {nenn }}$	[W]	-	-	-	-	900	900
		up to $85^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {nenn }}$	[W]	-	-	-	-	540	540
	$\mathrm{U}_{\mathrm{AC}}=600 \mathrm{VAC}$	$\leq 50{ }^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {nenn }}$	[W]	-	-	-	-	-	1080
		up to $85{ }^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {nenn }}$	[W]	-	-	-	-	-	648
Peak reverse voltage				[$\mathrm{]}$]	1600	1600	2000	1600	2000	2000
Rated insulation voltage			$\mathrm{U}_{\text {BMS }}$	[$\mathrm{V}_{\text {RMS }}$]	320	320	500	500	630	630
Pollution degree (insulation coordination)					1		1	1	1	1
Device fuses					To be included in the input voltage line.					
Recommended microfuse switching capacity H The microfuse corresponds to the max. possible connection capacity. If fuses are used corresponding to the actual capacities, the permitted limit integral 1 l't must be observed on selection.					FF 3.15 A	FF 3.15 A	FF 4 A	FF 5 A	FF 5 A	FF 5 A
Permitted limit integral			${ }^{12} t$	[$A^{2} \mathrm{~S}$]	40	40	50	100	50	50
Protection					IP65 components, encapsulated / IP20 terminals					
Terminals					Cross-section 0.14-1.5 mm ${ }^{\text {(}}$ (AWG 26-14)					
Ambient temperature				[${ }^{\text {C }}$]	-25 to +85					
Storage temperature				[${ }^{\circ} \mathrm{C}$]	-40 to +85					
Conformity markings					UL, CE	CE				
Installation conditions					The installation position can be user-defined. Please ensure sufficient heat dissipation and air convection! Do not install near to sources of intense heat!					

your reliable partner

Spark quenching unit Type 070.000.6

Application

Reduces spark production on the switching contacts occurring during DC-side switch-off of inductive loads.

- Voltage limitation according to VDE 0580 2000-07, Item 4.6.
- Reduction of EMC-disturbance by voltage rise limitation, suppression of switching sparks.
- Reduction of brake engagement times by a factor of 2-4 compared to free-wheeling diodes.

Function

The spark quenching unit will absorb voltage peaks resulting from inductive load switching, which can cause damage to insulation and contacts. It limits these to 70 V and reduces the contact load. Switching products with a contact opening distance of $>3 \mathrm{~mm}$ are suitable for this purpose.

Electrical Connection (Terminals)

1 (+) Input voltage
2 (-) Input voltage
$3(-) \quad$ Coil
$4(+) \quad$ Coil
5 Free nc terminal
6 Free nc terminal

Technical data

Input voltage
max. 300 VDC , max. $615 \mathrm{~V}^{2}$ (rectified voltage 400 VAC, 50 / 60 Hz)
Switch-off energy
Power dissipation
max. 9 J / 2 ms
max. 0.1 Watt
Rated voltage
nc terminals
Protection
Ambient temperature
Storage temperature
$-25^{\circ} \mathrm{C}$ up to $+105^{\circ} \mathrm{C}$
Max. terminal tightening torque 0.5 Nm

Accessories

Mounting bracket set for 35 mm mounting rail acc. EN 60715: Article No. 1803201

Order number

Dimensions (mm)

ROBA ${ }^{\oplus}$-takt clutch brake module

The clutch brake module for positioning and synchronising

E Energy-saving and environmentally-friendly

- Positioning accuracy for the entire service lifetime
- High switching frequency
\square Maintenance-free during the entire service lifetime
] Low-noise
- Sealed
- Individual variants
- without flange
- with cast IEC-flange
- with hollow shaft

Maintenance-free/

 no manual readjustment- Constant switching behaviour, i.e. high positioning accuracy and freedom from maintenance over the entire service lifetime
- No downtime due to readjustment

High radial shaft end loads

Strengthened bearings

- High radial loads of the input and output shafts permitted

Heat dissipation

Optimized heat dissipation and large cooling ribs

- Optimum operation temperature due to dissipation of the frictional heat
- Constant characteristic operating data

Low leakage flux/ high friction power

Larger magnetic and friction surfaces (asbestos free) with the same dimensions due to the new technology of the clutches and brakes

- Optimised electromagnetic effect, i.e. low leakage flux, faster switching behaviour, less heat build-up and, therefore, constant holding accuracy

Sturdy housing

Consists of en bloc cast two part ribbed housing, in a flanged design with cast flanges

- Large housing rigidity guarantees dimensional stability, even with loads not caused under regular conditions (for example weight load by people)

Functional principle

The ROBA ${ }^{\oplus}$-takt clutch brake module is an electromagnetic clutch brake unit. Whilst the drive machine runs through continuously, it generates cycle operation via alternating coupling and braking actions.
ROBA ${ }^{\circledR}$-takt clutch brake modules guarantee high cycle times.

Due to the completely enclosed construction (Protection IP55), conceived acc. VDE/IEC directives, the ROBA ${ }^{\bullet}$-takt clutch brake module is ideal for all standardized motors and gearboxes.
This means that many different installation positions are possible.
Due to the patented principle of self-readjustment, the ROBA ${ }^{\oplus}$-takt clutch brake module is accurately positioned and maintenance-free over the entire service lifetime.
your reliable partner
Summary of constructional designs ROBA $^{\oplus}$-takt
ROBA ${ }^{\circledR}$-takt

Sizes 3 to 7
Type 67_.0_4.0
Sizes 3 to 7
Type 67_. 0 _ . 0
without feet

IEC-flange small/small	Type	675.005 .0
IEC-flange small/large	Type	675.006 .0
IEC-flange large/small	Type	676.005 .0
IEC-flange large/large	Type	676.006 .0
with feet		
IEC-flange small/small	Type	675.015 .0
IEC-flange small/large	Type	675.016 .0
IEC-flange large/small	Type	676.015 .0
IEC-flange large/large	Type	676.016 .0

IEC-flange/shaft
IEC-flange/hollow shaft

Additional designs are available on request.

ROBA ${ }^{\oplus}$-takt clutch brake module

Sizes 3-7

Order number

* Special dimensions on request
your reliable partner
Sizes 3-7
Type 674.0_4.0

Technical data				Size				
				3	4	5	6	7
Nominal torque	Clutch	M_{2}	[Nm]	10	20	45	80	160
	Brake	M_{2}	[Nm]	8.5	17	45	80	160
Electrical power	Clutch	P_{20}	[W]	17	25	30	44	79
	Brake	P_{20}	[W]	13	23	30	45	70
Maximum speed		$\mathrm{n}_{\text {max }}$	[rpm]	3600	3600	3600	3600	3600
Weight	Type 674.014.0	m	[kg]	3.9	6.8	9.9	15.3	27.7
Mass moment of inertia	Output Type 674.014.0	1	[$10^{-4} \mathrm{kgm}^{2}$]	2.5	6.37	21.5	60.5	138

Standard voltages 24 VDC; 104 VDC.
Permitted voltage tolerances acc. IEC $38+/-10 \%$.

Dimensions [mm]	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
\mathbf{A}	126	146	165	189	233
\mathbf{B}	75	95	110	120	145
$\mathbf{B}_{\mathbf{1}}$	93	115	136	152	175
$\mathbf{B}_{\mathbf{2}}$	114	127	156	179	230
\mathbf{c}	19	22	28	28	33
$\mathbf{c}_{\mathbf{1}}$	37	46.5	57	67	89
$\mathbf{d}_{\mathbf{k} 6}$	14	19	24	28	38
\mathbf{f}	1	1	1	1	1
\mathbf{H}	86	94	106	121	142

Dimensions [mm]	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{H}_{\mathbf{1}}$	63	80	90	100	132
\mathbf{i}	M 5	M 6	M 8	M 10	M 12
\mathbf{k}	12.5	16	19	22	28
\mathbf{L}	200	239	279	323	408
$\mathbf{L}_{\mathbf{1}}$	138	157	177	201	246
\mathbf{I}	30	40	50	60	80
\mathbf{r}	6.6	9	11	11	14
\mathbf{u}	3	3	4	4	5

ROBA ${ }^{\circledR}$-takt clutch brake module

Sizes 3-7
Type 674.0_ _. 0

Order number

Clutch side	
IEC-flange small	5
IEC-flange large	6
	∇

your reliable partner
Sizes 3-7
Type 674.0_ . 0

Technical data				Size				
				3	4	5	6	7
Nominal torque	Clutch	M_{2}	[Nm]	10	20	45	80	160
	Brake	M_{2}	[Nm]	8.5	17	45	80	160
Electrical power	Clutch	P_{20}	[W]	17	25	30	44	79
	Brake	P_{20}	[W]	13	23	30	45	70
Maximum speed		$\mathrm{n}_{\text {max }}$	[rpm]	3600	3600	3600	3600	3600
Weight	Type 674.014.0	m	[kg]	3.9	6.8	9.9	15.3	27.7
Mass moment of inertia	Output Type 674.014.0	1	[$10^{-4} \mathrm{kgm}^{2}$]	2.5	6.37	21.5	60.5	138

Standard voltages 24 VDC; 104 VDC.
Permitted voltage tolerances acc. IEC $38+/-10 \%$.

Dimensions IEC [mm] optionally with small or large IEC-flange	Size									
	3		4		5		6		7	
	IEC-small	IEC-large								
D	140	160	160	200	200	200	200	250	250	300
$\mathrm{d}_{1}{ }^{\text {F8 }}$	11	14	14	19	19	24	24	28	28	38
$\mathbf{b}_{+0.3}^{+0.5}$	95	110	110	130	130	130	130	180	180	230
e_{1}	115	130	130	165	165	165	165	215	215	265
f_{1}	3.5	4	4	4	4	4	4	4.5	4.5	4.5
$\mathrm{H}_{1}{ }^{\text {1 }}$	70	80	80	100	100	100	100	125	125	150
I_{1}	25	32	32	42	42	55	55	65	65	90
s_{1}	9	9	9	11	11	11	11	14	14	14

Dimensions [mm]	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
\mathbf{A}	110	126	140	164	198
\mathbf{B}	75	95	110	120	145
$\mathbf{B}_{\mathbf{1}}$	93	115	136	152	175
\mathbf{c}	19	22	28	28	33
$\mathbf{C}_{\mathbf{1}}$	11	13.5	18	18	21
$\mathbf{d}_{\mathbf{k} 6}$	14	19	24	28	38
\mathbf{f}	1	1	1	1	1
\mathbf{H}	86	94	106	121	142
$\mathbf{H}_{\mathbf{2}}{ }^{\mathbf{1}}$	63	80	90	100	132

[^2]| Dimensions
 [mm] | \mathbf{y} | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | M 5 | M 6 | M 8 | M 10 | M 12 |
| \mathbf{k} | 12.5 | 16 | 19 | 22 | 28 |
| \mathbf{L} | 170 | 199 | 229 | 263 | 328 |
| $\mathbf{L}_{\mathbf{1}}$ | 139 | 158 | 178 | 202 | 247 |
| \mathbf{I} | 30 | 40 | 50 | 60 | 80 |
| \mathbf{p} | 12 | 13 | 14 | 14 | 20 |
| \mathbf{r} | 6.6 | 9 | 11 | 11 | 14 |
| \mathbf{u} | 3 | 3 | 4 | 4 | 5 |

We reserve the right to make dimensional and constructional alterations.

ROBA ${ }^{\circledR}$-takt clutch brake module

Sizes 3-7

output side brake side

Type 67_.0_4.0 clutch side

Order number

your reliable partner
Sizes 3-7
Type 67_. 0 _ . 0

Technical data				Size				
				3	4	5	6	7
Nominal torque	Clutch	M_{2}	[Nm]	10	20	45	80	160
	Brake	M_{2}	[Nm]	8.5	17	45	80	160
Electrical power	Clutch	P_{20}	[W]	17	25	30	44	79
	Brake	P_{20}	[W]	13	23	30	45	70
Maximum speed		$\mathrm{n}_{\text {max }}$	[rpm]	3600	3600	3600	3600	3600
Weight	Type 674.014.0	m	[kg]	3.9	6.8	9.9	15.3	27.7
Mass moment of inertia	Output Type 674.014.0	1	[$10^{-4} \mathrm{kgm}^{2}$]	2.5	6.37	21.5	60.5	138

Standard voltages 24 VDC; 104 VDC.
Permitted voltage tolerances acc. IEC $38+/-10 \%$.

Dimensions IEC [mm] optionally with small or large IEC-flange	Size									
	3		4		5		6		7	
	IEC-small	IEC-large								
D	140	160	160	200	200	200	200	250	250	300
$\mathrm{d}_{\text {k6 }}$	11	14	14	19	19	24	24	28	28	38
$\mathrm{b}_{\mathrm{j} 6}$	95	110	110	130	130	130	130	180	180	230
e	115	130	130	165	165	165	165	215	215	265
f	3	3.5	3.5	3.5	3.5	3.5	3.5	4	4	4
$\mathrm{H}_{1}{ }^{1}$	70	80	80	100	100	100	100	125	125	150
i	M4	M5	M5	M6	M6	M8	M8	M10	M10	M12
k	10	12.5	12.5	16	16	19	19	22	22	28
L	193	200	229	239	269	279	313	323	388	408
I	23	30	30	40	40	50	50	60	60	80
m	3	3.5	3.5	3.5	3.5	3.5	3.5	4	4	4
S	9	9	9	11	11	11	11	14	14	14

Dimensions [mm]	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
\mathbf{A}	110	126	140	164	198
\mathbf{B}	75	95	110	120	145
$\mathbf{B}_{\mathbf{1}}$	93	115	136	152	175
\mathbf{C}	19	22	28	28	33
$\mathbf{c}_{\mathbf{1}}$	11	13.5	18	18	21
$\mathbf{d}_{\mathbf{1} \mathbf{k} \mathbf{6}}$	14	19	24	28	38
$\mathbf{f}_{\mathbf{1}}$	1	1	1	1	1
\mathbf{H}	86	94	106	121	142

1) Please observe the difference in height of the feet input side and output side.

Dimensions [mm]	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
$\mathbf{H}_{\mathbf{2}}{ }^{\mathbf{1}}$	63	80	90	100	132
$\mathbf{i}_{\mathbf{1}}$	M 5	M 6	M 8	M 10	M 12
$\mathbf{k}_{\mathbf{1}}$	12.5	16	19	22	28
$\mathbf{L}_{\mathbf{1}}$	139	158	178	202	247
$\mathbf{I}_{\mathbf{1}}$	30	40	50	60	80
\mathbf{p}	12	13	14	14	20
\mathbf{r}	6.6	9	11	11	14
\mathbf{u}	2.5	3	3	3	4

We reserve the right to make dimensional and
constructional alterations.

ROBA ${ }^{\oplus}$-takt clutch brake module

Sizes 3-7

Order number

Brake side		Clutch side	
IEC-flange small $\mathbf{5}$ IEC-flange small $\mathbf{5}$ IEC-flange large $\mathbf{6}$ IEC-flange large $\mathbf{6}$ ∇ l			

-	/ 6	7	- .	0		-. 0		/	W	$/ B$	with control unit
\triangle					\triangle		\triangle		\triangle	\triangle	\triangle
$\begin{gathered} \text { Sizes } \\ 3 \\ \text { to } \\ 7 \end{gathered}$			without feet with feet		$\begin{aligned} & 0 \\ & 1 \end{aligned}$	Coil voltage [VDC]	$\begin{gathered} 24 \\ 104 \end{gathered}$		output shaft * $\varnothing d_{\text {к }}$	input hollow shaft bore * $\varnothing d_{1}{ }^{\text {F8 }}$	$\begin{gathered} \text { see } \\ \text { pages } \\ 56-58 \end{gathered}$

your reliable partner
Sizes 3-7
Type 67_. 0 _ . 0

Technical data				Size				
				3	4	5	6	7
Nominal torque	Clutch	M_{2}	[Nm]	10	20	45	80	160
	Brake	M_{2}	[Nm]	8.5	17	45	80	160
Electrical power	Clutch	P_{20}	[W]	17	25	30	44	79
	Brake	P_{20}	[W]	13	23	30	45	70
Maximum speed		$\mathrm{n}_{\text {max }}$	[rpm]	3600	3600	3600	3600	3600
Weight	Type 674.014.0	m	[kg]	3.9	6.8	9.9	15.3	27.7
Mass moment of inertia	Output Type 674.014.0	1	[$10^{-4} \mathrm{kgm}^{2}$]	2.5	6.37	21.5	60.5	138

Standard voltages 24 VDC; 104 VDC.
Permitted voltage tolerances acc. IEC $38+/-10 \%$.

Dimensions IEC [mm] optionally with small or large IEC-flange	Size									
	3		4		5		6		7	
	IEC-small	IEC-large								
D	140	160	160	200	200	200	200	250	250	300
$\mathrm{d}_{\mathrm{k} 6}$	11	14	14	19	19	24	24	28	28	38
$\mathrm{d}_{1}{ }^{\text {F8 }}$	11	14	14	19	19	24	24	28	28	38
$\mathrm{b}_{\mathrm{j} 6}$	95	110	110	130	130	130	130	180	180	230
$\mathrm{b}_{1+0.3}^{+0.5}$	95	110	110	130	130	130	130	180	180	230
e	115	130	130	165	165	165	165	215	215	265
f	3	3.5	3.5	3.5	3.5	3.5	3.5	4	4	4
f_{1}	3.5	4	4	4	4	4	4	4.5	4.5	4.5
$\mathrm{H}_{1}{ }^{1)}$	70	80	80	100	100	100	100	125	125	150
i	M4	M5	M5	M6	M6	M8	M8	M10	M10	M12
k	10	12.5	12.5	16	16	19	19	22	22	28
L	163	170	189	199	219	229	253	263	308	328
I	23	30	30	40	40	50	50	60	60	80
I_{1}	25	32	32	42	42	55	55	65	65	90
m	3	3.5	3.5	3.5	3.5	3.5	3.5	4	4	4
S	9	9	9	11	11	11	11	14	14	14

1) The difference in height of feet depends on the flange diameter.

Dimensions [mm]	\mathbf{y}	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
\mathbf{A}	94	106	115	139	166
B	75	95	110	120	145
$\mathbf{B}_{\mathbf{1}}$	93	115	136	152	175
C	19	22	28	28	33
$\mathbf{C}_{\mathbf{1}}$	11	13.5	18	18	21

Dimensions [mm]	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
\mathbf{H}	86	94	106	121	142
$\mathbf{L}_{\mathbf{1}}$	140	159	179	203	248
\mathbf{p}	12	13	14	14	20
\mathbf{r}	6.6	9	11	11	14
\mathbf{u}	3	3	4	4	5

Technical explanations

ROBA ${ }^{\circledR}$-takt clutch brake module

Permitted shaft load

The drive elements located on the shafts exert a radial load during operation which has to be absorbed by the bearings of the unit.

Fig. 1

The force value is limited by the required bearing service lifetime and by the shaft strength (Table 1).

ROBA ${ }^{@}$-takt	Size					
max. permitted						
radial force $\mathbf{F}_{\text {max }}[\mathbf{N}]$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	
Drive shaft without IEC-flange	333	995	2150	2705	5355	
Output shaft without IEC-flange	333	1105	2331	2950	6211	
Output shaft small IEC-flange	-	-	-	-	-	
Output shaft large IEC-flange	333	1105	2331	2950	6211	

Table 1: Max. permitted radial force $F_{\text {max }}$ limited due to the strength of the shaft, force application midway along shaft.

Diagram 1

For determining the permitted radial force, the force application is assumed to apply in the centre of the shaft. If additional axial forces occur, extensive calculation is necessary (please contact mayr power transmission).
The permitted radial forces are stated in Table 2.

ROBA ${ }^{\circledR}$-takt	Size				
Radial force $\mathbf{F}_{\mathbf{N}}[\mathbf{N}]$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$
Drive shaft without IEC-flange	436	547	681	819	1149
Output shaft without IEC-flange	788	1052	1484	1685	2861
Output shaft small IEC-flange	840	1134	1586	1785	3115
Output shaft large IEC-flange	788	1052	1484	1685	2861

Table 2: Permitted radial force F_{N} with speed $n=1500 \mathrm{rpm}$, bearing service lifetime $L_{h}=10000$ hours assuming force application midway along shaft.

For different speed or bearing service lifetime values, the permitted force F can be calculated using the factor k . The factor k can be determined using Diagram 1.

$$
\begin{aligned}
\mathbf{F} \quad & \mathbf{k} \times \mathbf{F}_{\mathbf{N}} \leq \mathbf{F}_{\text {max }} \quad[\mathbf{N}] \\
\mathrm{F} \quad \text { in } \mathrm{N}= & \text { Permitted radial force } \\
\mathrm{k} \quad= & \text { Correction factor (diagram 1) } \\
\mathrm{F}_{\mathrm{N}} \text { in } \mathrm{N}= & \text { Permitted radial force with speed } \mathrm{n}=1500 \mathrm{rpm} \\
& \begin{array}{l}
\text { and bearing service lifetime } \mathrm{L}_{\mathrm{h}}=10000 \text { hours } \\
\\
\text { (Table 2) }
\end{array} \\
\mathrm{F}_{\max } \text { in } \mathrm{N}= & \begin{array}{l}
\text { Max. permitted radial force, limited due to shaft } \\
\text { strength (Table } 1 \text {) }
\end{array}
\end{aligned}
$$

your reliable partner

Clutch brake modul size calculation

Formulas

Basis: $\quad M_{L}=$ constant
 $\mathrm{M}_{\mathrm{s}}=$ constant

1. Drive torque

$M_{A}=\frac{9550 \times P_{A}}{n}$
[Nm]

2. Required torque

$M_{\text {erf. }} \geq K \times M_{A}$
3. Pre-selection of the unit size acc. diagram 1 page 54
$M_{s} \geq M_{\text {erf. }}$
4. Mass moment of inertia
$1=I_{\text {eig. }}+I_{\text {zus. }}$
5. Acceleration time input side $\left(M_{A} \geq M_{S}\right)$
$\mathrm{t}_{\mathrm{a}}=\frac{1 \times \mathrm{n}}{9.55 \times\left(\mathrm{M}_{\mathrm{S}}{ }_{-}^{(+)} \mathrm{M}_{\mathrm{L}}\right)}+\mathrm{t}_{1}{ }^{1)}$

6. Deceleration time output side

$\mathrm{t}_{\mathrm{v}} \quad=\frac{1 \times n}{\left.9.55 \times\left(\mathrm{M}_{\mathrm{S}}{ }^{+}-\right) \mathrm{M}_{\mathrm{L}}\right)}+\mathrm{t}_{1}{ }^{2)}$
[sec]

Key:

$\mathrm{P}_{\text {A }}$	[kW]	input power	
$M_{\text {A }}$	[Nm]	drive torque	
$\mathrm{M}_{\text {erf. }}$	[Nm]	required torque	
M_{L}	[Nm]	load torque $(\stackrel{(+)}{-} / \underset{(-)}{+}=$ lower load $)$ Sign in brackets is valid if load is lowered	
M_{s}	[Nm]	switchable torque (diagram 1, page 54)	
n	[rpm]	input speed	
K		safety factor ≥ 2	
1	[kgm^{2}]	mass moment of inertia	
$I_{\text {eig. }}$	[kgm^{2}]	own mass moment of inertia ("Technical data")	
$\mathrm{I}_{\text {zus. }}$	[kgm^{2}]	additional mass moment of inertia	
t_{a}	[sec]	acceleration time (input side)	
t_{v}	[sec]	deceleration time (output side)	
$\mathrm{t}_{1}{ }^{1}$	[sec]	switching time of the clutch	Table 3,
$\mathrm{t}_{1}{ }^{\text {a }}$	[sec]	switching time of the brake	page 55
$\mathrm{S}_{\mathrm{h} \text { max }}$	$\left[\mathrm{h}^{-1}\right]$	max. switching frequency per hour (dependent on time)	
$Q_{\text {ges. }}$	[J]	total friction work (acc. Table 4, page 55)	
Q_{a}	[J]	friction work per acceleration	
Q_{E}	[J]	perm. friction work for single switching friction work per deceleration	Table 4, page 55
Q_{v}	[J]		
t_{s}	[sec]	delay times	
Z		number of switchings until wear limit	

7. Max. switching frequency per hour (dependent on time)

$$
\begin{equation*}
S_{h \max }=\frac{1}{\left(t_{v}+t_{a}\right) \times 1.2} \times 3600 \tag{-1}
\end{equation*}
$$

8. Friction work per acceleration
$Q_{a}=\frac{1 \times n^{2}}{182.4} \times \frac{M_{s}}{M_{S}{ }_{-}^{(+)} M_{L}}$
$Q_{a}<Q_{E}$

9. Friction work per deceleration

$Q_{v}=\frac{1 \times n^{2}}{182.4} \times \frac{M_{s}}{M_{s}(-) M_{L}}$
$Q_{v}<Q_{E}$
10.Check the selected unit size in diagram 2 (page 54 friction power diagram). The point of intersection of friction work (switching work) / switching frequency must be below the friction power curve! If it is above, the next size has to be selected and recalculated from point 3 on.
11. Number of switchings until wear limit
$Z \quad=\frac{Q_{\text {ges. }}}{{ }^{*} \mathrm{Qa}\left(\mathrm{Q}_{v}\right) \times 2}$
[-]

* Q_{a} / Q_{v} - put in higher value
your reliable partner

Calculation example

Data:

Input power
$\mathrm{P}_{\mathrm{A}}=0.75 \mathrm{~kW}$
Input speed
Load torque output
Additional mass moment of inertia
$=1400 \mathrm{rpm}$
$M_{L}=3.0 \mathrm{Nm}$
$\mathrm{I}_{\text {zus. }}=0.0042 \mathrm{kgm}^{2}$

Drive torque

$M_{A}=\frac{9550 \times P_{A}}{n}=\frac{9550 \times 0.75}{1400}=5.1[\mathrm{Nm}]$

Required torque

$\mathrm{M}_{\text {erf. }}=\mathrm{K} \times \mathrm{M}_{\mathrm{A}}=2 \times 5.1=\mathbf{1 0 . 2}[\mathrm{Nm}]$
Determined unit size acc. diagram $1=$ Size 4
$M_{s} \geq \quad M_{\text {erf }}$
$=11[\mathrm{Nm}]$

Mass moment of inertia

$I=I_{\text {eig. }}+I_{\text {zus. }}=0.000637+0.0042=0.00484\left[\mathrm{kgm}^{2}\right]$

Acceleration time input side (lift load) ($\left.M_{A} \geq M_{S}\right)$

$\mathrm{t}_{\mathrm{a}}=\frac{\mathrm{I} \times \mathrm{n}}{9.55 \times\left(\mathrm{M}_{\mathrm{s}}{ }_{-()} \mathrm{M}_{\mathrm{L}}\right)}+{ }^{*} \mathrm{t}_{1}{ }^{1)}$ (clutch)
$t_{a}=\frac{0.00484 \times 1400}{9.55 \times(11-3)}+0.065 \quad=0.153[\mathrm{sec}]$

Deceleration time output side (lower load)

$\mathrm{t}_{\mathrm{v}}=\frac{\mathrm{I} \times \mathrm{n}}{9.55 \times\left(\mathrm{M}_{\mathrm{s}} \text { を } \mathrm{M}_{\mathrm{L}}\right)}+{ }^{\left.\mathrm{t}_{1}{ }^{2}\right)}$ (brake)
$\mathrm{t}_{\mathrm{v}}=\frac{0.00484 \times 1400}{9.55 \times(11-3)}+0.040 \quad=\mathbf{0 . 1 2 9}[\mathrm{sec}]$

* Switching times $\mathrm{t}_{1}{ }^{1)}$ und $\mathrm{t}_{1}{ }^{2)}$ from Table 3, page $55=$ without overexcitation

Max. switching frequency per hour
$S_{h \max }=\frac{1}{\left(t_{v}+t_{a}\right) \times 1.2} \times 3600$
$S_{h \text { max }}=\frac{1}{(0.129+0.153) \times 1.2} \times 3600=10.638\left[\mathrm{~h}^{-1}\right]$

Friction work per acceleration

$Q_{a}=\frac{1 \times n^{2}}{182.4} \times \frac{M_{S}}{M_{s}-M_{L}}$
$Q_{a}=\frac{0.00484 \times 1400^{2}}{182.4} \times \frac{11}{11-3}=71.5[\mathrm{~J}] \leq Q_{E}$

Friction work per deceleration

$Q_{v}=\frac{1 \times n^{2}}{182.4} \times \frac{M_{S}}{M_{S}+M_{L}}$
$Q_{v}=\frac{0.00484 \times 1400^{2}}{182.4} \times \frac{11}{11+3}=40.9[\mathrm{~J}] \leq \mathrm{Q}_{\mathrm{E}}$
Check the selected unit size in the friction power diagram (determine point of intersection Q_{a} or Q_{v} to S_{h}).
(The point of intersection determined in diagram 2 must be located in or under the characteristic curve of the selected unit).

Number of switchings until wear limit

Switchable torque

Speed n [rpm]

Diagram 1
** Friction surfaces have been run in

Friction power diagram
valid for speed ≥ 1500 rpm

Switching frequency $\mathbf{S}_{\mathrm{h}}\left[\mathrm{h}^{-1}\right]$
Diagram 2

Switching times

The switching times stated in Table 3 have been determined by comprehensive series of tests. They are valid for switching DC-side with nominal air gap and warm coil.Deviations depend on the respective installation situation, ambient temperatures, release path and the type of rectification with which the corresponding clutch is operated.

Switching times				Size				
				3	4	5	6	7
without overexcitation	t_{11}	Clutch	[sec]	0.010	0.015	0.020	0.030	0.045
	t_{1}	Clutch	[sec]	0.045	0.065	0.080	0.150	0.200
	t_{11}	Brake	[sec]	0.006	0.008	0.010	0.015	0.025
	t_{1}	Brake	[sec]	0.035	0.040	0.055	0.100	0.150
	t_{2}	Clutch	[sec]	0.012	0.020	0.045	0.060	0.090
	t_{2}	Brake	[sec]	0.010	0.018	0.030	0.060	0.090
with overexcitation (only switch-on time)	t_{11}	Clutch	[sec]	0.003	0.005	0.007	0.010	0.015
	t_{1}	Clutch	[sec]	0.025	0.035	0.040	0.075	0.100
	t_{11}	Brake	[sec]	0.002	0.003	0.004	0.006	0.008
	t_{1}	Brake	[sec]	0.020	0.022	0.030	0.050	0.075
Recommended duration of overexcitation			[sec]	$0.010^{1)}$	$0.010^{1)}$	0.010	0.015	0.020
Minimal necessary slope separation	with	itation	[sec]	0.020	0.025	0.030	0.080	0.120
	witho	xcitation	[sec]	0	0	0.015	0.050	0.080
Height of the overexcitation $=$ approx. $10 \times$ nominal voltage (current limited)								

Table 3

1) In case of operation with overexcitation and high switching frequency ($80-100 \%$ of the diagram value), the recommended period of the overexcitation acc. Table 3 must not be exceeded.

Key:
$M_{2}=$ Nominal torque of the brake or clutch
$M_{L}^{2}=$ Load torque of the drive
P = Electrical power
$t_{a}=$ Acceleration time
$\mathrm{t}_{\mathrm{v}} \quad=$ Deceleration time
$\mathrm{t}_{1}=$ Connection time
$t_{11}=$ Response delay on connection
$t_{2}=$ Separation time
$\mathrm{t}_{3}=$ Slip time

Diagram 3:Torque-Time Diagram

Friction work			Size				
			3	4	5	6	7
Permitted friction work with a single switching	Q_{E}	[103 J$]$	3.8	6.2	9	15	25
Total friction work	$Q_{\text {ges }}$	[107 J]	22.5	44	87	171	340

Table 4

Please Observe!

Due to operating parameters such as sliding speed, pressing or temperature the wear values can only be considered guideline values.

ROBA ${ }^{\circledR}$-takt control unit Type 014.000.2

Function

The ROBA $^{\circledR}$-takt control unit operates according to the principle of a clocked switching regulator with a frequency of 18 kHz . Its coil is energised by actuating the sensor for clutch and brake. A temperature monitor protects the unit from overheating. Should the temperature exceed $>80^{\circ} \mathrm{C}$, the coil voltage is switched off. The LED "excess temperature unit" lights up red. A slope separation avoids simultaneous occurrence of clutch and braking torques. On overexcitation, the coil attraction time is reduced, allowing exact switching and positioning.

Electrical connection

1	Coil connection for clutch	$\mathrm{Br} / \mathrm{Br} 2$
2	Coil connection for brake	$\mathrm{Ku1} / \mathrm{Ku2}$
3	Sensor connection for clutch	$+12 \mathrm{~V} / \mathrm{Ku} / \mathrm{Gnd1}$
4	Sensor connection for brake	$+12 \mathrm{~V} / \mathrm{Br} / \mathrm{Gnd} 2$
5	Connection input voltage	$\mathrm{PE}, \mathrm{L} 1, \mathrm{~N}$
6	Temperature monitoring	Option 1 (bare)
7	Signalling relay	Option 2 (bare)

Technical data

Input voltage
Current consumption
No-load supply power
Coil $_{\text {NENN }}$ voltage
Coil $_{\text {NENN }}$ power
Coil ${ }_{\text {NENN }}$ current
Coil overexcitation

Overexcitation time

Slope separation

Protection
Ambient temperature Storage temperature Max. conductor cross-section Weight:

Device fuses, input-side G-microfuse
Device fuses, coil-side:
G-microfuse

Overvoltage category
Overvoltage protection

230 VAC $\pm 10 \%, 50-60 \mathrm{~Hz}$ max. 4 Ampere /100 \% duty cycle < 7 Watt
24 VDC
maximal 96 Watt
Manufacturer-side setting to mayr ${ }^{\circledR}$ ROBA $^{\circledR}$-takt size maximal 325 VDC

Current limitation is adapted to the respective coil size.
$2-50 \mathrm{~ms}$ (-30% to $+60 \%$),
externally adjustable
(only applicable with coding
"overexcitation ON")
2 - 150 ms (-25 \% to +30 \%),
externally adjustable
IP20
$0^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ up to $+70^{\circ} \mathrm{C}$
$2.5 \mathrm{~mm}^{2}$
1.5 kg

F1/F2, (M) 4 A, 5x20 mm

F3, the current is adapted to the ROBA ${ }^{\circledR}$-takt sizes. Always use the same replacement fuses
two; one for connection to PELV/SELV (control cables)
For installation in overvoltage category III, a suitable overvoltage protection unit is required between the incoming voltage and the ROBA ${ }^{\oplus}$-takt control unit.

Application

This unit is used to start, stop and to position by switching and controlling the mayr ${ }^{\circledR}-$ ROBA $^{\circledR}$-takt clutch brake modules.

Dimensions (mm)

Order number

Sizes 3-7
ROBA ${ }^{\oplus}$-takt control unit

Control unit temperature monitoring

A fitted temperature switch prevents the control unit from overheating.
your reliable partner

Functional sequence

\qquad

ROBA ${ }^{\circledR}$-takt circuit module Type 004.000.

Application

This device is used to start and stop mayr ${ }^{\circledR}$ ROBA $^{\circledR}$-takt clutch brake modules.
It can be used for alternating 24 VDC coil switching, if a 24 VDC power supply is available.

Function

1-sensor operation:
activated clutch is energised deactivated brake is energised

The respective control of the clutch or brake is indicated via LED. The ROBA ${ }^{\circledR}$-takt circuit module has no overexcitation function.

The brake has priority: The brake is energised independently of the sensor position when the 24 VDC power supply is switched on. The coil is energised with the 24 VDC power supply.

Slope separation: To avoid simultaneous clutch and braking torques, a slope separation of $0-100 \mathrm{~ms}$ between clutch and brake can be set, which acts according to the respective attraction time and drop-out time of the coils (see switching time table). This adjustment is carried out via the potentiometers $\mathrm{Ku}=$ clutch (P 2) and $\mathrm{Br}=$ brake $(\mathrm{P} 1)$. The factory default setting is 0 ms .

Electrical connection (Terminals)

1	Input voltage	24 VDC
2	Input voltage	GND
$3+4$	Brake	
$5+6$	Clutch	
7	Control voltage for switches or sensors	12 VDC
$8+9$	Control inputs	

Technical data

Input voltage

Recommended fuse
Output voltage
Output power
Slope separation
Ambient temperature
Storage temperature
Conductor cross-section
Protection
Design

24 VDC SELV/PELV ripple content $\leq 5 \%$
T 4A
24 VDC
maximal 79 W
$0-100 \mathrm{~ms}$
(factory default setting is 0 ms)
$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
$-20^{\circ} \mathrm{C}$ up to $+85^{\circ} \mathrm{C}$
0.14-1.5 mm² / AWG 26-14

IP00
Printed board with screw-on attachment part or a mounting frame for 35 mm standard mounting rails

Maximal cycle frequency		$\mathbf{4 5}^{\circ} \mathbf{C}$	$\mathbf{7 0}^{\circ} \mathbf{C}$
up to 1 A / Sizes 3 + 4	cycles / min	600	600
approx. 2 A / Sizes 5 +6	cycles / min	240	180
approx. 3 A / Size 7	cycles / min	120	75

Attention!

Higher cycle frequencies will lead to ROBA $^{\circledR}$-takt circuit module overload and failure.

Dimensions (mm)
Dimensions with mounting frame

Order number

your reliable partner

Product Summary

Safety Clutches/Overload Clutches

\square EAS $^{\oplus}$-Compact ${ }^{\oplus} /$ EAS $^{\oplus}$-NC
Positive locking and completely backlash-free torque limiting clutches

- EAS ${ }^{\circledR}$-smartic ${ }^{\circledR}$

Cost-effective torque limiting clutches, quick installation
\square EAS $^{\circledR}$-element clutch/EAS ${ }^{\circledR}$-elements
Load-disconnecting protection against high torques

- EAS ${ }^{\circledR}$-axial

Exact limitation of tensile and compressive forces

Load-disconnecting torque limiting clutches with switching function
ROBA ${ }^{\circledR}$-slip hub
Load-holding, frictionally locked torque limiting clutches

- ROBA ${ }^{\oplus}$-contitorque

Magnetic continuous slip clutches

- EAS ${ }^{\circledR}$-HSC/EAS ${ }^{\circledR}$-HSE

High-speed safety clutches for high-speed applications

Shaft Couplings

\square smartflex ${ }^{\circledR} /$ primeflex ${ }^{\circledR}$
Perfect precision couplings for servo and stepping motors

- ROBA ${ }^{\circledR}$-ES

Backlash-free and damping for vibration-sensitive drives
\square ROBA $^{\circledR}$-DS/ROBA ${ }^{\circledR}$-D
Backlash-free, torsionally rigid all-steel couplings

- ROBA ${ }^{\oplus}$-DSM

Cost-effective torque-measuring couplings

Electromagnetic Brakes/Clutches

\square ROBA-stop ${ }^{\circledR}$ standard
Multifunctional all-round safety brakes

- ROBA-stop ${ }^{\text {® }}$-M motor brakes

Robust, cost-effective motor brakes
\square ROBA-stop ${ }^{\text {® }}$-S
Water-proof, robust monoblock brakesROBA-stop ${ }^{\circledR}$-Z/ROBA-stop ${ }^{\circledR}$-silenzio ${ }^{\circledR}$
Doubly safe elevator brakes
\square ROBA $^{\circledR}$-diskstop ${ }^{\circledR}$
Compact, very quiet disk brakes
\square ROBA $^{\circledR}$-topstop ${ }^{\circledR}$
Brake systems for gravity loaded axes
\square ROBA $^{\oplus}$-linearstop
Backlash-free brake systems for linear motor axes

- ROBA ${ }^{\circledR}$-guidestop

Backlash-free holding brake for profiled rail guides

ROBATIC ${ }^{\oplus} /$ ROBA $^{\circledR}$-quick/ROBA ${ }^{\circledR}$-takt
Electromagnetic clutches and brakes, clutch brake units

DC Drives

tendo ${ }^{\circledR}-\mathrm{PM}$

Permanent magnet-excited DC motors

[^0]: 3) Turning for RS-ball bearing according to customer specifications - no
[^1]: * Stated only with flange hub design or internal hub design

[^2]: 1) Please observe the difference in height of the feet input side and output side.
